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“This text presents the material in a clear and straightforward manner, making it 
accessible to undergraduate students while still maintaining value for experts. 
… The new version adds even more relevant and cutting-edge topics in the 
field while continuing the excellent coverage of the fundamentals. It is a natural 
addition to the bookshelves of anyone interested in distributed algorithms.”
—Andrew Berns, University of Wisconsin-La Crosse, USA

“The main theme of this edition, as in the first, is to show the implementation of 
distributed algorithms as well as to describe the rich theory behind them. [The 
second edition] is well organized and … the contents are enriched by the addition 
of new chapters. This book is essential reading for senior/graduate classes on 
distributed systems and algorithms. I strongly recommend it.”
—Kayhan Erciyes, Izmir University, Turkey

Distributed Systems: An Algorithmic Approach, Second Edition provides a 
balanced and straightforward treatment of the underlying theory and practical 
applications of distributed computing. As in the previous version, the language 
is kept as unobscured as possible—clarity is given priority over mathematical 
formalism. This easily digestible text:

• Features significant updates that mirror the phenomenal growth of 
distributed systems

• Explores new topics related to peer-to-peer and social networks
• Includes fresh exercises, examples, and case studies

Supplying a solid understanding of the key principles of distributed computing 
and their relationship to real-world applications, Distributed Systems: An 
Algorithmic Approach, Second Edition makes both an ideal textbook and a 
handy professional reference.
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Preface

Distributed systems have witnessed phenomenal growth in the past few years. 
The declining cost of hardware, the advancements in communication technology, 

the explosive growth of the Internet, and our ever-increasing dependence on networks for 
a wide range of applications ranging from social communication to financial transactions 
have contributed to this growth. The breakthroughs in embedded systems, nanotechnol-
ogy, and wireless communication have opened up new frontiers of applications like sensor 
networks and wearable computers. The rapid growth of cloud computing and the growing 
importance of big data have changed the landscape of distributed computing.

Most applications in distributed computing center around a set of core subproblems. 
A proper understanding of these subproblems requires a background of the underlying 
theory and algorithmic issues. This book provides a balanced coverage of the founda-
tional topics and their relationship to real-world applications. The language has been kept 
as unobfuscated as possible—clarity has been given priority over formalism. The  second 
edition fixes many of the problems in the first edition, adds new topics, and significantly 
upgrades the contents. The 21 chapters have been divided into five sections: Section I 
(Chapters 1 and 2) deals with background materials that include various cloud com-
puting platforms. Section II (Chapters 3 through 6) presents foundational topics, which 
address system  models,  correctness criteria, and proof techniques. Section III (Chapters 7 
through  11)  presents the core paradigms in distributed systems—these include logical 
clocks, distributed snapshots and debugging, deadlock and termination detection, elec-
tion, and distributed graph algorithms. Section IV (Chapters 12 through 17) addresses 
failures and fault-tolerance techniques in various applications—it covers consensus, trans-
actions, group communication, replicated data management, and self-stabilization. Group 
communication and consensus have been included in this section since they are two of 
the primary beneficiaries of fault-tolerant designs. Finally, Section V (Chapters 18 through 
21) addresses a few real-world issues—these include distributed discrete-event simulation, 
security, sensor networks, and social and peer-to-peer networks. Each chapter has a list 
of exercises that will challenge the readers (those tagged with * are the more challenging 
ones). A small number of these are programming exercises. Some exercises will encourage 
the readers to learn about outside materials.

The book is intended for use in a one-semester course at the senior undergraduate 
or the first-year graduate level. About 75% of the material can be covered in one semes-
ter. Accordingly, the chapters can be picked and packaged in several different ways. 
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A theory-oriented offering is possible using Chapters 1 through 17. For a more practical 
flavor, use Chapters 1 and 2, selected topics from Chapters 3 through 16, and Chapters 18 
through 21, supplemented by a semester-long project chosen from replicated data man-
agement, sensor networks, group communication, discrete-event simulation, and social 
or peer-to-peer networks. Additional material is available from the author’s website: 
http://homepage.cs.uiowa.edu/~ghosh/thebook.html.

Here is a disclaimer: this book is not about programming distributed systems. Chapter 2 
is only a high-level description that we expect everyone to know, but it is not an introduc-
tion to programming. If programming is the goal, then I encourage readers to look for 
other resources. There are several good books available on this topic.

Sukumar Ghosh
Iowa City, Iowa
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Introduction

1.1 WHAT IS A DISTRIBUTED SYSTEM?
Life in the twenty-first century has a growing dependence on networked services that have 
changed the fabric of the society. Starting from web searching, video conferencing, stock 
trading, and net banking to keeping in touch with friends and peers through various kinds 
of social networks, network-based services play a dominant role. While networks provide 
the basic connectivity, the various services built on top of these networks are examples of 
distributed systems.

Leslie Lamport once noted, “A distributed system is one in which the failure of a 
 computer you didn’t even know existed can render your own computer unusable.” While this 
is certainly not a definition, it characterizes the challenges in coming up with an appro-
priate definition of a distributed system. What is distributed in a distributed system? If 
the processor of computer system is located 100 yards away from its main memory, then 
is it a distributed system? What if the input–output devices are located 3 miles away from 
the processor? If physical distribution is taken into account, then the definition of a dis-
tributed system becomes uncomfortably dependent on the degree of physical distribution 
of the hardware components, which is certainly not acceptable. To alleviate this problem, 
it is customary to characterize a distributed system using the logical or functional distri-
bution of the processing capabilities.

A distributed system typically satisfies the following criteria:

Multiple processes: The system consists of more than one sequential process. These pro-
cesses can be either system or user processes, but each process should have an independent 
thread of control—either explicit or implicit.

Interprocess communication: Processes communicate with one another using messages that 
take a finite time to travel from one process to another. The actual nature or order of the 
delay will depend on the physical characteristics of the message links. These message links 
are also called channels.

Disjoint address spaces: Processes have disjoint address spaces. We will thus not take 
into account a shared-memory multiprocessor as a true representation of a distributed 
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computing system. Note that programmers often represent interprocess communication 
using shared-memory primitives, but the abstraction of shared memory can be imple-
mented using messages. The relationship between shared memory and message passing 
will be discussed in Chapter 3.

Collective goal: Processes must interact with one another to meet a common goal. Consider 
two processes P and Q in a network of processes. If P computes f(x) = x2 for a given set of 
values of x, and Q multiplies a set of numbers by π, then we hesitate to call (P, Q) a distrib-
uted system, since there is no interaction between P and Q. However, if P and Q cooperate 
with one another to compute the areas of a set of circles of radius x, then (P, Q) collectively 
represent a meaningful distributed system. Similarly, if a set of sellers advertise the cost of 
their products, and a set of buyers post the list of the goods that they are interested in buy-
ing as well as the prices they are willing to pay, then individually, neither the buyers nor 
the sellers are meaningful distributed systems, but when they are coupled into an auction 
system through the Internet, then it becomes a meaningful distributed system.

The aforementioned definition is a minimal one. It does not take into consideration the 
system-wide executive control for interprocess cooperation or security issues, which are 
certainly important concerns in the run-time management and support of user computa-
tions. The definition highlights the simplest possible characteristics for a computation to 
be logically distributed. Physical distribution is often a prerequisite for logical distribution.

1.2 WHY DISTRIBUTED SYSTEMS
Over the past years, distributed systems have gained substantial importance. The reasons 
of their growing importance are manifold:

Geographically distributed environment: First, in many situations, the computing environment 
itself is geographically distributed. As an example, consider a banking network. Each bank is 
supposed to maintain the accounts of its customers. In addition, banks communicate with one 
another to monitor interbank transactions or record fund transfers from geographically dis-
persed automated teller machines (ATMs). Another common example of a geographically 
distributed computing environment is the Internet, which has deeply influenced our way of 
life. The mobility of the users has added a new dimension to the geographic distribution.

Speed up: Second, there is the need for speeding up computation. The speed of computation in 
traditional uniprocessors is fast approaching the physical limit. While multicore, superscalar, 
and very large instruction word (VLIW) processors stretch the limit by introducing parallelism 
at the architectural level, the techniques do not scale well beyond a certain level. An alterna-
tive technique of deriving more computational power is to use multiple processors. Dividing a 
total problem into smaller subproblems and assigning these subproblems to separate physical 
processors that can operate concurrently are potentially an attractive method of enhancing the 
speed of computation. Moreover, this approach promotes better scalability, where the users or 
administrators can incrementally increase the computational power by purchasing additional 
processing elements or resources. This concept is extensively used by the social networking sites 
for the concurrent upload and download of the photos and videos of millions of customers.
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Resource sharing: Third, there is a need for resource sharing. Here, the term resource 
represents both hardware and software resources. The user of computer A may want to 
use a fancy laser printer connected with computer B, or the user of computer B may need 
some extra disk space available with computer C for storing a large file. In a network of 
workstations, workstation A may want to use the idle computing powers of workstations 
B and C to enhance the speed of a particular computation. Through Google Docs, Google 
lets you share their software for word processing, spreadsheet application, and presentation 
creation without anything else on your machine. Cloud computing essentially outsources 
the computing infrastructure of a user or an organization to data centers—these centers 
allow thousands of their clients to share their computing resources through the Internet 
for efficient computing at an affordable cost.

Fault tolerance: Fourth, powerful uniprocessors or computing systems built around a single 
central node are prone to a complete collapse when the processor fails. Many users consider 
this to be risky. Distributed systems have the potential to remedy this by using appropriate fault-
tolerance techniques—when a fraction of the processors fail, the remaining processes take over 
the tasks of the failed processors and keep the application running. For example, in a system 
having triple modular redundancy (TMR), three identical functional units are used to perform 
the same computation, and the correct result is determined by a majority vote. In many fault-
tolerant distributed systems, processors routinely check one another at predefined intervals, 
allowing for automatic failure detection, diagnosis, and eventual recovery. Some users of non-
critical applications are willing to compromise with a partial degradation in system perfor-
mance when a failure cripples a fraction of the processing elements or the communication links 
of a distributed system. This is the essence of graceful degradation. A distributed system thus 
provides an excellent opportunity for incorporating fault tolerance and graceful degradation.

1.3 EXAMPLES OF DISTRIBUTED SYSTEMS
There are numerous examples of distributed systems that are used in everyday life in a 
variety of applications. A fraction of these services are data intensive, and the computational 
component is very small. Examples are database-oriented applications (think about Google 
searching and collecting information from computers all over the world). Others are com-
putation intensive. Most systems are structured as client–server systems, where the server 
machine is the custodian of data or resources and provides service to a number of geograph-
ically distributed clients. A few applications, however, do not rely on a central server—these 
are peer-to-peer (P2P) systems. Here are a few examples of distributed systems:

World Wide Web: The World Wide Web (WWW) is a popular service running on the 
Internet. It allows documents in one computer to refer to textual or nontextual informa-
tion stored in other computers. For example, a document in the United States may contain 
references to the photograph of a rainforest in Africa or a music recording in Australia. 
Such references are highlighted on the user’s monitor, and when selected by the user, the 
system fetches the item from a remote server using appropriate protocols and displays the 
picture or plays the music on the client machine.
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The Internet and the WWW have changed the way we perform our daily activities or 
carry out business. For example, a large fraction of airline and hotel reservations are now 
done through the Internet. Shopping through the Internet has dramatically increased dur-
ing the past few years. Millions of people now routinely trade stocks through the Internet. 
Music lovers download and exchange CD-quality music, pushing old-fashioned CD and 
DVD purchases to near obsolescence. Digital libraries provide users instant access to 
archival information from the comfort of their homes.

Social networks: Internet-mediated social interaction has witnessed a dramatic growth in 
recent times. Millions of users now use their desktop or laptop computers or smartphones 
to post and exchange messages, photos, and video clips with their buddies using these 
networking sites. Members of social networks can socialize by reading the profile pages 
of other members and contacting them. Interactions among members often lead to the 
formation of virtual communities or clubs sharing common interests. The inputs from 
the members are handled by thousands of servers at one or more geographic locations, and 
these servers carry out specific tasks on behalf of the members—some deal with photos, 
some handle videos, some handle membership changes, etc. As membership grows, more 
servers are added to the pool, and powerful servers replace the slower ones.

Interbank networks: Amy needs $300 on a Sunday morning, so she walks to a nearby ATM 
to withdraw some cash. Amy has a checking account in Iowa City, but she has two savings 
accounts—one in Chicago and the other in Denver. Each bank has set an upper limit of 
$100 on the daily cash withdrawal, so Amy uses three different bank cards to withdraw the 
desired cash. These debits are immediately registered in her bank accounts in three different 
cities, and her new balances are recomputed. The ATMs are registered with their respective 
financial institutions, and the interbank network carries out the entire operation.

Peer-to-peer networks: P2P systems are quite popular for file sharing, content distribution, 
and Internet telephony. Historically, Napster was the pioneer in the use of P2P technology for 
sharing the personal music collections of its clients. Instead of storing the songs on a central 
computer, the songs live on users’ machines. There are millions of them scattered all over 
the world. When you want to download a song using Napster, you are downloading it from 
another person’s machine, and that person could be your next-door neighbor or someone 
halfway around the world. This led to the development of P2P data sharing. Napster was 
not a true P2P system, since it used a centralized directory. But many subsequent systems 
providing similar service (e.g., Gnutella, KaZaA) avoided the use of a central server or a cen-
tral directory. P2P systems are now finding applications in areas beyond exchanging music 
files. For example, the OceanStore project at the University of California, Berkeley, built an 
online data archiving mechanism on top of an underlying P2P network Tapestry. Millions 
use Skype that is built around P2P technology for Internet telephony and video chats.

Real-time distributed systems: Real-time distributed systems deal with time-critical coor-
dination of events in a geographically distributed setting. Industrial plants extensively use 
networks of controllers to oversee production and maintenance. Consider a chemical plant, 
in which a controller maintains the pressure of a certain chamber to 200 psi. As the vapor 
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pressure increases, the temperature has a tendency to increase—so there is another control-
ler 300 ft away that controls the flow of a coolant. This coolant ensures that the temperature 
of the chamber never exceeds 180°F. Furthermore, the safety of the plant requires that the 
product of the pressure and the temperature does not exceed 35,000. Here, the distributed 
computing system maintains an invariance relationship on system parameters monitored 
and controlled by independent controllers. In urban traffic control networks, the  computers 
at the different control points control traffic signals to minimize traffic congestion and 
maximize traffic flow. Vehicular networks allow spontaneous intervehicle wireless commu-
nication, which not only enables vehicles to share information about road conditions with 
other vehicles but also opens up the possibility of improved mobility and collective safety.

Sensor networks: The declining cost of hardware and the growth of wireless technology 
have led to new opportunities in the design of application-specific or special-purpose 
distributed systems. One such application is a sensor network [ASSC02]. Each node is a 
miniature processor equipped with a few sensors that sense various environmental param-
eters, and is capable of wireless communication with other nodes. Such networks can be 
potentially used in a wide class of problems: These range from battlefield surveillance, 
biological and chemical attack detection, to healthcare, home automation, ecological, and 
habitat monitoring. This is a part of a larger vision of ubiquitous computing.

Grid and cloud computing: Grid computing is a form of distributed computing that supports 
parallel programming on a network of computers. At the low end, a computational grid 
can use a fraction of the computational resources of one or two organizations, whereas at 
the high end, it can combine millions of computers worldwide to work on extremely large 
computational projects. The goal is to solve difficult computational problems more quickly 
and less expensively than by conventional methods. We provide two examples here.

The first example is the Large Hadron Collider (LHC), a particle accelerator and a 
complex experimental testbed built at the European Organization of Nuclear Research 
(CERN) started operation from 2008, and it is being used to answer fundamental ques-
tions of science. The scientific experiments generate approximately 15 PB of data each 
year (1 PB = 1015 bytes, and this is the equivalent of more than 20 million CDs). These 
data are distributed around the globe, to 11 large computer centers located in Canada, 
France, Germany, Italy, the Netherlands, the Nordic countries, Spain, Taipei, the United 
Kingdom, and two sites in the United States forming a worldwide virtual organization. 
These Tier-1 centers make the data available to more than 150 Tier-2 centers for specific 
analysis tasks. Individual scientists at the various countries can locally access the LHC 
data using local computer clusters and PCs.

The second example is the SETI@home project. Do extraterrestrials exist? SETI (acro-
nym for search for extraterrestrial intelligence) is a massive project aimed at discovering the 
existence of extraterrestrial life in this universe. The large volume of data that is constantly 
being collected from hundreds of radio telescopes needs to be analyzed to draw any conclu-
sion about the possible existence of extraterrestrial life. This requires massive computing 
power. Rather than using supercomputers, the University of California, Berkeley, SETI team 
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decided to harness the idle computing power of the millions of PCs and workstations belong-
ing to you and me, computing power that is otherwise wasted by running useless screensaver 
programs. Currently, about 40 GB of data are pulled down daily by the telescope and sent 
to over three million computers all over the world to be analyzed. The results are sent back 
through the Internet, and the program then collects a new segment of radio signals for the 
PC to work on. The system executes 14 trillion floating-point operations per second and has 
garnered over 500,000 years of PC time in the past year and a half. It would normally cost 
millions of dollars to achieve that type of power on one or even two supercomputers.

Cloud computing enables clients to outsource their software usage, data storage, and even 
the computing infrastructure to remote data centers. Clients interact with the cloud stor-
age and applications through the Internet using their web browsers. Users need not acquire 
or maintain expensive hardware and software but nevertheless get their jobs done by pay-
ing for the usage of the resources. With the extensive availability of high-speed networks 
and the declining cost of computers, cloud computing provides an economic alternative to 
conventional computing. It presents a flexible approach where users can increase their com-
puting capacity on the fly as a pay-per-use service. The task of maintaining the hardware 
and software at the data centers rests with the cloud service provider, who is responsible for 
overseeing the seamless sharing of these resources and maintaining privacy of user data.

1.4 IMPORTANT ISSUES IN DISTRIBUTED SYSTEMS
This book will mostly deal with process models and distributed computations supported by 
these models. A model is an abstract view of a system. It ignores many physical details of 
the system. That does not mean that the implementation issues are unimportant, but these 
are outside the scope of this book. Thus, when discussing about a network of processes, we 
will never describe the type of processors running the processes, or the characteristics of the 
physical memory, or the rate at which the bits of a message are being pumped across a par-
ticular channel. Our emphasis is on computational activities represented by the concurrent 
or interleaved execution of actions on a network of sequential processes. Some of the impor-
tant issues in the study of the computational models of distributed systems are as follows:

Knowledge of a process: The knowledge of a process is local. No process is ordinarily 
expected to have global knowledge about either the network topology or the global state. 
Each process thus has a myopic view of the system. It is fair to expect that a process knows 
(1) its own identity, (2) its own state, and (3) the identity of its immediate neighbors. In 
some special cases, a process may also have exact or approximate knowledge about the size 
(i.e., the number of nodes) of the network. Any other knowledge that a process might need 
has to be acquired from time to time through appropriate algorithmic actions.

Network topology: A network of processes may either be completely connected or sparsely 
connected. In a completely connected network, a channel (also called a link) exists between 
every pair of processes in the system. This condition does not hold for a sparsely connected 
topology. As a result, message routing is an important activity. A link between a pair of 
processes may be unidirectional or bidirectional. Examples of sparse topologies are trees, 
rings, arrays, and hypercubes (Figure 1.1).
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Degree of synchronization: Some of the deeper issues in distributed systems center around 
the notion of synchrony and asynchrony. According to the laws of astronomy, real time is 
defined in terms of the rotation of the Earth in the solar system. However, the international 
time standard now is the Coordinated Universal Time (UTC). UTC is the current term for 
what was commonly referred to as Greenwich Meridian Time (GMT). Zero hour in UTC 
is midnight in Greenwich, England, which lies on the zero longitudinal meridian. UTC 
is based on a 24 h clock; therefore, afternoon hours such as 6 p.m. UTC are expressed as 
18:00 UTC. Each second in UTC is precisely the time for 9,192,631,770 orbital transitions 
of the cesium 133 atom. The time keeping in UTC is based on atomic clocks. UTC signals 
are regularly broadcast from satellites as well as many radio stations. In the United States, 
this is done from the WWV radio station in Fort Collins, Colorado, where satellite signals 
are received through Global Positioning System (GPS). A useful aspect of atomic clocks is 
the fact that these can, unlike solar clocks, be made available anywhere in the universe.

Assume that each process in a distributed system has a local clock. If these clocks 
represent the UTC (static differences due to time zones can be easily taken care of and 
ignored from this equation), then every process has a common notion of time, and the 
system can exhibit synchronous behavior by the simultaneous scheduling of their actions. 
Unfortunately, in practical distributed systems, this is difficult to achieve, since the drift of 
the local physical clocks is a fact of life. One approach to handle this is to use a time server 
that keeps all the local clocks synchronized with one another. This is good enough for 
some applications, but not all.

The concept of a synchronous system has evolved over many years. There are many 
facets of synchrony. One is the existence of an upper bound on the propagation delay of 
messages. If the message sent by process A is not received by process B within the expected 
interval of real time, then process B suspects some kind of failure. Another feature of a 
synchronous system is the first-in-first-out (FIFO) behavior of the channels connecting the 
processes. With these various possibilities, it seems prudent to use the attribute synchro-
nous to separately characterize the behaviors of clocks, or communication, or channels.

In a fully asynchronous system, not only there is clock drift, but also there is no upper 
bound on the message propagation delays. Processes can be arbitrarily slow, and out-of-
order message delivery between any pair of processes is considered feasible. In other words, 
such systems may completely disregard the rule of time, and processes schedule events at 

(a) (b) (c)

FIGURE 1.1 Examples of network topologies: (a) ring, (b) directed tree, and (c) 3D cube. Each node 
represents a process, and each edge connecting a pair of nodes represents a channel.
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an arbitrary pace. The properties of a distributed system depend on the type of synchrony. 
Results about one system often completely fall apart when assumptions about synchrony 
change from synchronous to asynchronous. In Chapter 6, we will find out how the lack of a 
common basis of time complicates the notion of global state and consequently the ordering 
of events in a distributed system.

Failures: The handling of failures is an important area of study in distributed systems. A 
failure occurs when a system as a whole or one or more of its components do not behave 
according to their specifications. Numerous failure models have been studied. The most 
common failure model is crash, where a process ceases to produce any output. In another 
case of failure, a process does not stop but simply fails to send one or more messages or 
execute one or more steps. This is called omission failure. This includes the case when a 
message is sent but lost in transit. Sometimes, the failure of a process or a link may alter 
the topology by partitioning the network into disjoint subnetworks. In the byzantine fail-
ure model, a process may behave in a completely arbitrary manner—for example, it can 
send inconsistent or conflicting message to its neighboring processes—or may execute a 
program that is different from the designated one.

Along with the type of failure, its duration is of significance. It is thus possible that a 
process exhibits byzantine failure for 5 s, then resumes normal behavior, and after 30 min, 
fails by stopping. We will discuss more about various fault models in Chapter 12.

Scalability: An implementation of a distributed system is considered scalable when its per-
formance is not impaired regardless of the final scale of the system. The need for additional 
resources to cope with the increased scale should be manageable. Scalability is an impor-
tant issue since many distributed systems have witnessed tremendous growth in size over 
the past decade—it is quite common for current social networks to have millions of regis-
tered users. Scalability suffers when the resource requirement grows alarmingly with the 
scale of the system. Some systems deliver the expected performance when the number of 
nodes is small, but fail to deliver when the number of nodes increases. From an algorithmic 
perspective, the scalability is excellent when the space or time complexity of a distributed 
algorithm is O(log n) or lower, where n is the number of processes in the  system—however, 
when it is O(n) or higher, the scalability is considered poor. Well-designed distributed sys-
tems usually exhibit good scalability.

1.5 COMMON SUBPROBLEMS
Most applications in distributed computing center around a set of common subproblems. 
If we can solve these common subproblems in a satisfactory way, then we have a good 
handle on system design. Here are a few examples of common subproblems:

Leader election: When a number of processes cooperate with one another for solving a 
problem, many implementations prefer to elect one of them as the leader and the remain-
ing processes as followers. The leader assumes the role of a coordinator and runs a program 
that is different from that of the followers. If the leader crashes, then one of the followers is 
elected the leader, after which the system runs as usual.
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Mutual exclusion: Access to certain hardware resources is restricted to one process at a 
time: an example is a printer. There are also software resources where concurrent accesses 
run the risk of producing inconsistent results: for example, multiple processes are not ordi-
narily allowed to update a shared data structure. Mutual exclusion guarantees that at most 
one process acquires the resource or performs a critical operation on a shared data at any 
time and concurrent access attempts to such resources are serialized.

Time synchronization: Local clocks invariably drift and need periodic resynchronization to 
support a common notion of time across the entire distributed system.

Global state: The global state of a distributed system consists of the local states of its com-
ponent processes. Any computation that needs to compute the global state at a given time 
has to read the local states of every component process at that time. However, given the 
facts that local clocks are never perfectly synchronized and message propagation delays are 
finite, computation of the global state is a nontrivial problem.

Multicasting: Sending of a given data to multiple processes in a distributed system is a 
common subtask in many applications. As an example, in group communication, one 
may want to send some breaking news to millions of members as quickly as possible. The 
important issues here are efficiency, reliability, and scalability.

Replica management: To support fault tolerance and improve system availability, the use 
of process replicas is quite common. When the main server is down, one of the replica 
servers replaces the main server. Data replication (also known as caching) is widely used 
for conserving system bandwidth. However, replication requires that the replicas be appro-
priately updated. Since such updates can never be instantaneously done, it leaves open the 
possibility of inconsistent replicas. How to update the replicas and what kind of response 
can a client expect from these replicas? Are there different notions of consistency in replica 
management? How are these related to the cost of the update operation?

1.6 IMPLEMENTING A DISTRIBUTED SYSTEM
A model is an abstract view of a system. Any implementation of a distributed computing 
model must involve the implementation of processes, message links, routing schemes, and 
timing. The most natural implementation of a distributed system is a network of computers, 
each of which runs one or more processes. Using the terminology from computer archi-
tecture, such implementations belong to the class of loosely coupled multiple instruction 
multiple data (MIMD) machines, where each processor has a private address space. The best 
example of a large-scale implementation of a distributed system is the WWW. A cluster of 
workstations connected to one another via a local area network (LAN) serves as a medium-
scale implementation. In a smaller scale, mobile ad hoc networks and a wireless sensor net-
work are appropriate examples.

Distributed systems can also be implemented on a tightly coupled MIMD machine, 
where processes running on separate processors are connected to a globally shared 
memory. In this implementation, the shared memory simulates the interprocess com-
munication channels. Finally, a multiprogrammed uniprocessor can be used to simulate 
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a shared-memory multiprocessor and hence a distributed system. For example, the very 
old RC4000 was the first message-based operating system designed and implemented by 
Brinch Hansen [BH73] on a uniprocessor. Amoeba, Mach, and Windows NT are examples 
of microkernel-based operating systems where processes communicate via messages.

Distributed systems have received significant attention from computer architects because 
of their potential for better scalability. In a scalable architecture, resources can be continu-
ously added to improve performance, and there is no appreciable bottleneck in this process. 
Bus-based multiprocessors do not scale beyond 8–16 processors because the bus bandwidth 
acts as a bottleneck. Shared-memory symmetric multiprocessors (also called SMPs) built 
around multistage interconnection networks suffer from some degree of contention when 
the number of processors reaches 1000 or more. Recent trends in scalable architecture show 
reliance on multicomputers, where a large number of autonomous machines (i.e., processors 
with private memories) are used as building blocks. For the ease of programming, various 
forms of distributed shared memory (DSM) are then implemented on it, since programmers 
do not commonly use message passing in developing application programs.

Social networks implement a version of a distributed system that can be viewed as a 
graph, with the nodes representing members and the edges representing friendship rela-
tion between members. The servers maintain the friendship relationships and oversee the 
access control.

Another implementation of a distributed system is a neural network, which is a system 
mimicking the operation of a human brain. A neural network contains a number of proces-
sors operating in parallel, each with its own small sphere of knowledge and access to data in 
its local memory. Such networks are initially trained by rules about data relationships (e.g., 
“A mother is older than her daughter”). A program can then tell the network how to behave in 
response to input from a computer user. The results of the interaction can be used to enhance 
the training. Some important applications of neural networks include stock market predic-
tion, weather prediction, oil exploration, and the interpretation of nucleotide sequences.

These different architectures merely serve as platforms for implementation or simula-
tion. A large number of system functions are necessary to complete the implementation 
of a particular system. For example, many models assume communication channels to 
be FIFO. Therefore, if the architecture does not naturally support FIFO communica-
tion between a pair of processes, then FIFO communication has to be implemented first. 
Similarly, many models assume there will be no loss or corruption of messages. If the 
architecture does not guarantee these features, then appropriate protocols have to be used 
to remedy this shortcoming. No system can be blamed for not performing properly, if the 
model specifications are not appropriately satisfied.

1.7 PARALLEL VERSUS DISTRIBUTED SYSTEMS
What is the relationship between a parallel system and a distributed system? Like distrib-
uted systems, parallel systems are yet to be clearly defined. The folklore is that any system 
in which the events can at best be partially ordered is a parallel system. This naturally 
includes every distributed system and all shared-memory systems with multiple threads 
of control. According to this view, distributed systems form a subclass of parallel systems, 
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where the state spaces of processes do not overlap. Processes have greater autonomy. This 
view is not universally accepted. Some distinguish parallel systems from distributed sys-
tems on the basis of their objectives: parallel systems focus on increasing performance, 
whereas distributed systems focus on tolerating partial failures. As an alternative view, par-
allel systems consist of processes in a single instruction single data (SIMD) type of synchro-
nous environment or a synchronous MIMD environment, asynchronous processes in a 
shared-memory environment are the building blocks of concurrent systems, and cooperat-
ing processes with private address spaces constitute a distributed system.

1.8 BIBLIOGRAPHIC NOTES
The book by Coulouris et al. [CDK11] contains a good overview of distributed systems 
and their applications. Tel [T00] covers numerous algorithmic aspects of distributed 
systems. Tannenbaum and van Steen’s book [TS07] addresses practical aspects and 
implementation issues of distributed systems. Distributed operating systems have been 
presented by Singhal and Shivaratri [SS94]. Greg Andrew’s book [A00] provides a decent 
coverage of concurrent and distributed programming methodologies. The SETI@home 
project and its current status are described in [SET02]. Akyildiz et al. [ASSC02] presents 
a survey of wireless sensor networks.

EXERCISES
To solve these problems, identify all sequential processes involved in your solution and give 
an informal description of the messages exchanged among them. No code is necessary—
pseudocode is ok.

1.1  A distributed system is charged with the responsibility of deciding whether a given 
integer N is a prime number. The system has a fixed number of processes. Initially, 
only a designated process called the initiator knows N, and the final answer must 
be available to the initiator. Informally describe what each process will do and what 
interprocess messages will be exchanged.

1.2  In a network of processes, every process knows about itself and its immediate neigh-
bors only. Illustrate with an example how these processes can exchange information 
to gain knowledge about the global topology of the network.

1.3  A robot B wants to cross a road, while another robot A is moving from left to right 
(Figure 1.2). Assuming that each robot can determine the (x, y) coordinates of both the 
robots, outline the program for each robot, so that they do not collide with each other. 

xx΄

y

y΄

A
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FIGURE 1.2 Robot B crossing a road and trying to avoid collision with robot A.
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You can assume that (1) the clocks are synchronized and (2) the robots advance in 
discrete steps—with each tick of the clock, they move one foot at a time.

1.4  On a Friday afternoon, a passenger asks a travel agent to reserve the earliest flight 
next week from Cedar Rapids to Kathmandu via Chicago and London. United 
Airlines operates hourly flights in the sector Cedar Rapids to Chicago. In the sector 
Chicago–London, British Airways operates daily flights. The final sector is operated 
by the Royal Nepal Airlines on Tuesdays and Thursdays only. Assuming that each of 
these airlines has an independent agent to schedule its flights, outline the interactions 
between the travel agent and these three airline agents, so that the passenger eventu-
ally books a flight to Kathmandu.

1.5  Alice plans to call Bob from a pay phone in Bangkok using a credit card. The call 
is successful only if (1) Alice’s credit card is still valid, (2) Alice does not have any 
past due in her account, and (3) Bob’s telephone number is correctly dialed by Alice. 
Assuming that a process card checks the validity of the calling card, a second process 
bill takes care of billing, and a third process switch routes the call to Bob, outline the 
sequence of actions during the call establishment period.

1.6  In many distributed systems, resource sharing is a major goal. Provide examples of 
systems where the shared resource is (1) a disk, (2) a network bandwidth, and (3) a 
processor.

1.7  KaZaA is a system that allows users to download music files in a transparent way 
from another computer that may belong to a next-door neighbor or to someone half-
way around the world. Investigate how this file sharing is implemented.

1.8  A customer wants to fly from airport A to airport B within a given period of time by 
paying the cheapest fare. She submits the query for flights and expects to receive the 
reply in a few seconds. Travelocity.com, expedia.com, and orbitz.com already have 
such services in place. Investigate how these services are implemented.

1.9  Sixteen motes (miniature low-cost processors with built-in sensors) are being used 
to monitor the average temperature of a furnace. Each mote has limited communica-
tion ability and can communicate with two other motes only. The wireless network 
of motes is not partitioned. Find out how each mote can determine the average tem-
perature of the furnace.

1.10  How can a single processor system be used to implement a unidirectional ring of 
N processes?

1.11 Can we view a digital circuit as a distributed system? Justify your answer.
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C h a p t e r  2

Interprocess Communication
An Overview

2.1 INTRODUCTION
Interprocess communication is at the heart of distributed computing. User processes run 
on host machines that are connected to one another through a network, and the network 
carries signals that propagate from one process to another. These signals represent data.* 

We separate interprocess communication into two parts:

Networking: This deals with how processes communicate with one another via the various 
protocol layers. The important issues in networking are routing, error control, flow control, 
authentication, etc. This is the internal view.

Users’ view: User processes have an abstract high-level view of the interprocess communi-
cation medium. This is the external view. An average user does not bother about how the 
communication takes place. The processes may communicate across a LAN, or through 
the Internet, or a combination of these, or via shared (virtual) address space, an abstraction 
that is created on a message-passing substrate to facilitate programming. Most working 
distributed systems use the client–server model. A few systems also adopt the P2P model of 
interprocess communication, where there is no difference between servers and clients. User 
interfaces rely on programming tools available to a client for communicating with a server 
or to a peer for communicating with another peer. Some tools are general, while others 
are proprietary. In this chapter, we will focus mostly on the users’ view of communication.

2.1.1 Processes and Threads

A process is the execution of a program. The operating system supports multiple processes 
on a processor, so multiple logical processes (LPs) can execute on the same physical pro-
cessor. Threads are lightweight processes. Like a process, each thread maintains a separate 
flow of control, but threads share a common address space. Multiple threads improve the 

* The word data here represents anything that can be used by a string of bits.
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transparency of implementation of clients and servers and the overall performance. In a 
multithreaded server, while one thread is blocked on an event, other threads carry out the 
pending unrelated operations. In multicore processors, each core can support one or more 
threads. Today’s multicore processors have 4–16 cores (and this number will grow), so 
these processors can support a large number of threads.

2.1.2 Client–Server Model

The client–server model is a widely accepted model for designing distributed systems. Client 
processes request for service, and server processes provide the desired service. A simple 
example of client–server communication is the Domain Name Service (DNS)—clients 
request for network addresses of Internet domain names, and DNS returns the addresses 
to  the clients. Another example is that of a search engine like Google. When a client 
submits a query about a document, the search engine looks up its servers and returns 
pointers  to the web pages that can possibly contain information about that document. 
Note that the designation of clients and servers is not unique and a server can be a client 
of another server.

2.1.3 Middleware

Complex distributed systems have significant degrees of heterogeneity. Processes, pro-
cessors, and objects may be scattered anywhere in a network. To simplify the task of 
software development, the users should not be bothered about the locations of these enti-
ties or the kind of machines that they are on. Developers should not have to worry about 
integrating enterprise software applications developed at different times, by different 
vendors, or even communicating via different protocols. The layer of software that sim-
plifies the task of tying complex subsystems together or connecting software components 
is called middleware. It is an extension of the services offered by the operating system 
and is logically positioned between the application layer and the operating system layer 
of the individual machines (Figure 2.1).

Middleware

Network

Applications

OS of 
machine 1

OS of 
machine 2

OS of 
machine 3

OS of 
machine 4

FIGURE 2.1 Understanding middleware.
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With the rapid growth of distributed applications, middleware services are one of the 
fastest-growing services. There are many services under this category. Some important 
middleware services address the following issues:

 1. How does a process locate another named process or object anywhere on the Internet?

 2. How does a process send queries to multiple distributed databases anywhere on the 
Internet?

 3. How to isolate the application programs from differences in programming languages 
and communication protocols?

 4. How is the security of the communication guaranteed without any knowledge of the 
trustworthiness of the operating systems at the two endpoints?

 5. How does a mobile personal device (like a patient’s smartphone) switch to 3G/4G net-
work during travel and then switch to Bluetooth when it comes close to a Bluetooth-
enabled PC at home?

We begin with an overview of networking. The following section is an outline of network-
ing and a summary of some commonly used communication protocols. Further details are 
available in any textbook on networking.

2.2 NETWORK PROTOCOLS
We begin with a brief description of Ethernet and IEEE 802.11 since they are the most 
widely used protocols for wired and wireless LANs.

2.2.1 Ethernet

Bob Metcalfe at Xerox PARC developed Ethernet in 1973. The network consists of a num-
ber of computers connected with one another through a common high-speed bus. Every 
machine constantly listens to the signals propagating through the bus. Because the bus is 
common, at most one sender is allowed to send data at any time. However, no machine 
is aware of when other machines want to send data—so several senders may try to send 
simultaneously and it leads to a collision. Senders detect the collision, back off for a ran-
dom interval of time, and make another attempt to transmit data. This protocol is known 
as carrier sensing multiple access with collision detection (CSMA/CD). The protocol guar-
antees that, eventually, exactly one of the contending processes becomes the bus master 
and is able to use the bus for sending data.

The CSMA/CD protocol is quite similar to the informal protocol used by students to 
speak with the instructor in a classroom. Under normal conditions, at most one student 
should speak at any time. However, no student has an a priori knowledge of when another 
student wants to speak, so a number of students may simultaneously try to raise their 
hands to express their intention to speak. At the same time, every student raising a hand 
constantly watches if any other hand is raised—this is collision detection. When a collision 
is detected, they back off and try later. Eventually, only one hand is raised, and that student 
speaks—all others wait until that student is done.
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To detect collision in the Ethernet, every sender needs to wait for a minimum period of 
time 2T after starting transmission, where T is the maximum time required by the signal 
to travel from one node to another. If the maximum distance between a pair of nodes is 
1 KM, then T ≥ (103/3×108) s* = 3.33 μs. So, after attempting a send operation, a node has 
to wait for at least 6.66 μs to ensure that no one else has started data transmission. After 
a node detects a collision, it waits for a period qT before attempting a retransmission, 
where q is a random number. It can be mathematically demonstrated that this strategy 
leads to collision avoidance with probability 1.

The data transfer rate for the original Xerox PARC Ethernet was only 3 Mb/s (three 
million bits per second). In the later version of widely used Ethernets, the transfer rate 
was 10  Mb/s. Technological improvements have led to the emergence of fast Ethernets 
(100 Mb/s) and gigabit Ethernets (1 GB/s). Gigabit Ethernets can be used as the backbone of 
a very high-speed network.

The latency of message propagation in an Ethernet depends on the degree of contention. 
The term channel efficiency is used to specify the ratio of the number of packets success-
fully transmitted to the theoretical maximum number of packets that could be transmitted 
without collision. Typical Ethernets can accommodate up to 1024 machines.

2.2.2 Wireless Networks

The dramatic increase in the number of portable or handheld devices like smartphones has 
increased the emphasis on mobile computing, also known as nomadic computing. The appli-
cations are manifold: from accessing the Internet through your smartphone or PDA to disas-
ter management and communication in the battlefield. Mobile users do not always rely on 
wireless connection between the two endpoints. For example, a mobile user carrying a lap-
top computer may connect to a fixed network as he or she moves from one place to another. 
However, for many other applications, wireless connection becomes necessary. There are 
several issues that are unique to mobile communication: The portable unit is often powered 
off for conserving battery power. The activities are generally short and bursty in nature, like 
checking an email or making a query about whether the next flight is on time. The potential 
for radio interference is much higher, making error control difficult. The administrative back-
bone divides the areas of coverage into cells, and a user roaming from one cell to another has 
to successfully hand off the application to the new cell without the loss or corruption of data. 
Finally, the portable device may easily be lost or stolen, which poses new security problems.

In this section, we only discuss those systems that have no wired infrastructure for com-
munication. This includes mobile ad hoc networks but excludes networks where the wire-
less communication replaces the last hop of the wired communication. The salient features 
of wireless transmission are as follows:

Limited range: The range measured by the Euclidean distance across which a communi-
cation can take place is limited. It is determined by the power of the transmitter and the 
power of the battery.

* The speed of signal propagation is 3 × 108 m/s.
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Dynamic topology: If the nodes are mobile, then the neighborhood relationship is not 
fixed. The connectivity is also altered when the sender increases the power of transmis-
sion. Algorithms running on wireless networks must be able to adapt to changes in the 
network topology.

Collision: The communication from two different processes can collide and garble the mes-
sage. Transmissions need to be coordinated so that no process is required to receive a mes-
sage from two different senders concurrently.

IEEE 802.11 defines the standards of wireless communication. The physical transmis-
sion uses either direct sequence spread spectrum (DSSS) or frequency hopping spread spec-
trum (FHSS), or infrared (IR). It defines a family of specifications (802.11a, 802.11b, 802.11g) 
(commonly called Wi-Fi) each with different capabilities. The basic IEEE 802.11 makes pro-
visions for data rates of either 1 or 2 Mb/s in the 2.4 GHz frequency band using DSSS or 
FHSS transmission. IEEE 802.11b extends the basic 802.11 standard by allowing data rates 
of 11 Mb/s in the 2.4 GHz band and uses only DSSS. 802.11g further extends the data rate 
to 54 Mb/s. 802.11a also extends the basic data rate of 802.11 to 54 Mb/s, but uses a differ-
ent type of physical transmission called orthogonal frequency division multiplexing. It has a 
shorter transmission range and a lesser chance of radio-frequency interference. 802.11a is 
not interoperable with 802.11b or 802.11g. More recently, the 802.11n protocol uses multiple 
antennas to increase data rates from 54 Mb/s (offered by 802.11a and 802.11g) to 600 Mb/s.

To control access to the shared medium, 802.11 standard specifies a carrier sense multi-
ple access with collision avoidance (CSMA/CA) protocol that allows at most one process in 
a neighborhood to transmit. As in CSMA/CD, when a node has a packet to transmit, it first 
listens to ensure that no other node is transmitting. If the channel is clear, that is, no one 
else within the sender’s radio range is transmitting, then it transmits the packet. However, 
collision detection, as is employed in Ethernet, cannot be used for radio-frequency trans-
missions of 802.11. This is because when a node is transmitting, it cannot hear any other 
node in the system that may start transmitting, since its own signal will drown out others.

To resolve this, as an optional mechanism, whenever a packet is to be transmitted, the 
transmitting node first sends out a short ready-to-send (RTS) packet containing informa-
tion on the length of the packet. If the receiving node hears the RTS, it responds with 
a short clear-to-send (CTS) packet. After this exchange, the transmitting node sends its 
packet. When the packet is received successfully as certified by a cyclic redundancy check 
(CRC), the receiving node transmits an acknowledgment (ack) packet. This back-and-forth 
exchange is necessary to avoid the hidden node problem. Consider three nodes A, B, C, such 
that node A can communicate with node B and node B can communicate with node C, 
but node A cannot communicate with node C. As a result, although node A may sense the 
channel to be clear, node C may in fact be transmitting to node B. The protocol described 
earlier alerts node A that node B is busy, and hence it must wait before transmitting its 
packet. CSMA/CA significantly improves bandwidth utilization.

A wireless sensor network consists of a set of primitive computing elements (called sen-
sor nodes or motes) capable of communicating by radio waves. Each node has one or more 
sensors that can sense the physical parameters of the environment around it and report 
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it to the neighbors within its transmission range. The use of wireless sensor networks has 
substantially grown in the past 10 years. In some large-scale applications, the number of 
motes can scale to a few thousand. Protocols pay special attention to the power consump-
tion and battery life. To conserve power, processes adopt a variety of techniques, includ-
ing periodically switching to the sleep mode (that consumes very little battery power). 
Maintaining good clock synchronization and sender–receiver coordination turns out to 
be an important issue.

The topology of a wireless network depends on the power level used for transmission. 
Consider the nodes 0–6 in Figure 2.2a. The nodes 0, 1, 2 are within the radio range of 
node 3, but outside the ranges of nodes 4, 5, 6. Nodes 0, 1, 2 are within the radio range of one 
another. Nodes 3, 4, 6 are within the range of node 5. Finally, nodes 4 and 6 are within each 
other’s range. The corresponding topology of the network is shown in Figure 2.2b. To broad-
cast across the entire network, at most three broadcast steps are required—this corresponds 
to the diameter of the network. The topology will change if a different level of power is used. 
A useful goal here is to minimize power consumption while maximizing connectivity.

2.2.3 OSI Model

Communication between users belonging to the same network or different networks 
requires the use of appropriate protocols. A protocol is a collection of data encoding stan-
dards and message exchange specifications that the sender and the receiver processes 
follow for completing a specific task. Protocols should be logically correct and well doc-
umented, and their implementations should be error-free. The International Standards 
Organization (ISO) recommends such protocols for a variety of networking applications. 
The Open System Interconnection (OSI) model adopted by ISO is a framework for such a 
protocol. It has seven layers (Figure 2.3) and serves as a reference for discussing other net-
work protocols.

To understand the idea behind a protocol layer, consider the president of a company 
sending a proposal to the president of another company. The president explains the idea 
to her secretary. The secretary converts it to a proposal in the appropriate format and 
then hands it over to the person in charge of dispatching letters. Finally, that person 
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FIGURE 2.2 (a) Nodes 0, 1, 2 are within the range of node 3, but outside the ranges of nodes 4, 5, 6. 
Nodes 3, 4, 6 are within the range of node 5. Nodes 0, 1, 2 are within one another’s range and so 
are nodes 4, 6. (b) The topology of the network.
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sends out the letter. In the receiving company, the proposal papers follow the reverse 
direction, that is, a person in the dispatch section first receives it and then gives the pro-
posal to the secretary to the president, who delivers it to the president.

Communication between two processes follows a similar pattern. Each protocol layer 
can be compared to a secretary or a clerk. Breaking a large task into layers of abstraction is 
an accepted way of mastering software complexity. Furthermore, appropriate error control 
mechanisms at the lower layers ensure that the best possible information percolates to the 
top layer or the application layer. The roles of the different layers in OSI are summarized 
in the following:

Application layer: This layer caters to specific application needs of the user processes. 
Examples are email, bulletin boards, chat rooms, web applications, and directory services.

Presentation layer: Data representation formats may vary between the sender and the 
receiver machines. This layer resolves the compatibility problems by addressing the syn-
tactic differences in data representation. Mime encoding/decoding, data compression/
decompression, and encryption/decryption are addressed in this layer. The presentation 
layer also contains user interface components—these include ASP.NET web forms or 
Microsoft® Windows forms that contain codes to perform the functions of configuring the 
visual appearance of controls, acquiring and rendering data for business components, etc.

Session layer: The connection between the processes at the two endpoints is established and 
maintained at this level for all connection-oriented communications. Once a connection is 
established, all references to the remote machine use a session address. Such a session can 
be used for ftp, telnet, etc.

6  Presentation layer

7  Application layer

1  Physical layer

5  Session layer

4  Transport layer

3  Network layer

2  Data link layer

6  Presentation layer

7  Application layer

1  Physical layer

5  Session layer

4  Transport layer

3  Network layer

2  Data link layer

Sender Receiver

FIGURE 2.3 The seven-layer OSI model.
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Transport layer: The goal of the transport layer is to provide end-to-end communication 
between the sender and the receiver processes. Depending on the error control mechanism 
used, such communications may be unreliable or reliable. Well-known examples of trans-
port layer protocols are transmission control protocol (TCP) and user datagram protocol 
(UDP). Each message is targeted towards a destination process with a unique IP address on 
the Internet. The IP address may either be a permanent or a temporary one when a DHCP 
server is used. Note that the messages are not yet divided into packets.

Network layer: The network layer provides machine-to-machine communication and is 
responsible for message routing. Messages are broken down into packets of a prescribed size 
and format. Each packet is treated as an autonomous entity and is routed through the rout-
ers to the destination node. Two kinds of communications are possible: In virtual circuits, 
first, a connection is established from the sender to the receiver, and then packets arrive at 
the destination in the same order in which they are sent. Datagrams do not require a con-
nection establishment phase. Out-of-order delivery of messages is possible, and the trans-
port layer handles the task of packet resequencing. Some important issues in this layer are 
routing via shortest path or minimum hops, avoiding deadlocks during packet switching, 
etc. In a LAN, routing activity is nonexistent. IP is a network layer protocol in WAN.

Data link layer: This layer assembles the stream of bits into frames and appends error con-
trol bits (like cyclic redundancy codes) to safeguard against corruption of messages in tran-
sit. The receiver acknowledges the receipt of each frame, following which the next frame is 
sent out. Different data link protocols use different schemes for sending acks. Requests for 
retransmission of lost or corrupted frames are handled through an appropriate dialogue.

Physical layer: This layer deals with how a bit is sent across a channel. In electrical com-
munication, the issue is what voltage levels (or what frequencies) are to be used to represent 
a 0 or a 1. In optical communication, the corresponding issue is what kind of light signals 
(i.e., amplitude and wavelength) is to be sent across fiber-optic links to represent a 0 or a 1.

The layers of protocols form a protocol stack or a protocol suite. The protocol stack defines 
the division of responsibilities. In addition, in each layer, some error control mechanism 
is incorporated to safeguard against possible malfunctions of that layer. This guarantees 
that the best possible information is forwarded to the upper layers. The OSI protocol stack 
provides a framework meant to encourage the development of nonproprietary software in 
open systems. Real protocol suites do not always follow the OSI guidelines. However, in 
most cases, the activities belonging to a particular layer of a real protocol can be mapped 
to the activities of one or more layers of the OSI protocol.

2.2.4 IP

Internetworking aims at providing a seamless communication system across a pair of com-
puters on the Internet. The Internet protocol (IP) defines the method for sending data from one 
computer (also called a host) to another. Addressing is a critical part of Internet abstraction. 
Each computer has at least one IP address that uniquely distinguishes it from all other com-
puters on the Internet. The message to be sent is divided into packets. Each packet contains 
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the Internet address of both the sender and the receiver. IP is a connectionless protocol, which 
means it requires no continuing connection between the end hosts. Every packet is sent to a 
router (also called a gateway) that reads the destination address and forwards the packet to 
an adjacent router, which in turn reads the destination address and so forth, until one router 
recognizes that the destination of the packet is a computer in its immediate neighborhood 
or domain. That router then forwards the packet directly to the computer whose address is 
specified. Each packet can take a different route across the Internet, and packets can arrive in 
an order that is different from the order they were transmitted. This kind of service is a best-
effort service. If the reception has to be error-free and the reception order has to be the same 
as the transmission order, then one needs another protocol like TCP.

The most widely used version of IP today is still IP Version 4 (IPv4) with a 32-bit address. 
However, the adoption of IP Version 6 (IPv6) is growing. IPv6 uses 128-bit addresses and 
can potentially accommodate many more Internet users. IPv6 includes the capabilities of 
IPv4 but does not provide downward compatibility—although the two implementations 
can coexist via dual-stack servers. In addition to the expanded address space, the deploy-
ment of IPv6 is targeted at the better handling of mobility, quality of service (QoS), mul-
ticasting, privacy extension, and so on. Although the global IP6 traffic is currently a little 
above 1%, it is scheduled to replace IP4 in the next few years.

On an Ethernet, each source and destination node has a 48-bit hardware address, called 
the medium access control address (MAC address) stored in its network interface card. The 
MAC address is used by the data link layer protocols. The IP addresses are mapped to the 
48-bit hardware addresses using the address resolution protocol (ARP). The ARP client and 
server processes operate on all computers using IP over Ethernet.

2.2.5 Transport Layer Protocols

Two common transport layer protocols are UDP and TCP.

UDP/IP: UDP uses IP to send and receive data packets, but packet reception may not follow 
the transmission order. UDP is a connectionless protocol. The application program must ensure 
that the entire message arrived and in the right order. UDP provides two services not provided 
by the IP layer. It provides port numbers to help distinguish different user requests and a check-
sum capability to verify that the data arrived intact. UDP can detect errors but drops packets 
with errors. Network applications that want to save processing time because messages are short 
or occasional errors have no significant impact prefer UDP. Others use TCP.

TCP/IP: The TCP running over IP is responsible for overseeing the reliable and efficient 
delivery of data between a sender and a receiver. Data can be lost in transit. TCP adds sup-
port to the recovery of lost data by triggering retransmission, until the data are correctly 
and completely received in the proper sequence. By doing so, TCP implements a reliable 
stream service between a pair of ports in the sender and the receiver processes.

Unlike UDP, TCP is a connection-oriented protocol—so actual data communication 
is preceded by a connection establishment phase and terminated by a connection termi-
nation phase. The basic idea behind error control in TCP is to add sequence number to 
the packets prior to transmission and monitor the ack received for each packet from the 
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destination process. If the ack is not received within a window of time that is a reasonable 
estimate of the turnaround delay, then the message is retransmitted. The receiving process 
sends an ack only when it receives a packet with the expected sequence number.

Transmission errors can occur for a variety of reasons. Figure 2.4 shows a slice of the 
Internet. Assume that each of the two users 1 and 2 are simultaneously sending mes-
sages to user 3 at the rate of 8 MB/s. However, LAN D, to which user 3 is connected, is 
unable to handle incoming data at a rate exceeding 10 MB/s. In this situation, there are two 
possible options:

Option 1: The router can drop the packets that LAN D is unable to handle.

Option 2: The router can save the extra packets in its local memory and transmit them to 
LAN D at a future time.

Option 2 does not rule out packet loss, since each router has a limited amount of mem-
ory. Among many tasks, TCP/IP helps recover lost packets, reorder them, and reject dupli-
cate packets before they are delivered to the destination process. For the efficient use of the 
transmission medium, TCP allows multiple data packets to be transmitted before the ack 
to the first packet is received. TCP has a mechanism to estimate the round-trip time and 
limit data rates to clear out congestions.

TCP/IP provides a general framework over which many services can be built and 
message-passing distributed algorithms can be implemented. Despite occasional criti-
cisms, it has successfully carried out its mission for many years, tolerating many changes 
in network technology.

2.2.6 Interprocess Communication Using Sockets

Sockets are abstract endpoints of communication between a pair of processes. Developed 
by Berkeley Software Distribution as a part of BSD UNIX, sockets are integrated into 
the I/O part of the operating system. Sockets are of two types: stream sockets and 
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FIGURE 2.4 Five LANs connected to WANs that serve as the backbone.
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datagram sockets. Stream sockets use TCP/IP, and datagram sockets use UDP/IP. The 
steps involved in a client–server communication using sockets are as follows:

First, a client process requests the operating system to create a socket by making the 
socket system call, and a descriptor identifying the socket is returned to the client. Then 
it uses the connect system call to connect to a port of the server. Once the connection is 
established, the client communicates with the server.

Like the client, the server process also uses the socket system call to create a socket. 
Once created, the bind system call will assign a port number to the socket. If the pro-
tocol is a connectionless protocol like UDP, then the server is ready to receive packets. 
For connection-oriented protocols like TCP, the server first waits to receive a connection 
request by calling a listen procedure. The server eventually accepts the connection using 
the accept system call. Following this, the communication begins. After the communica-
tion is over, the connection is closed.

A port number is a 16-bit entity. Of the 216 possible ports, some (0–1023) are reserved 
for standard services. For example, server port number 21 is for FTP, port 22 is for Secure 
Shell (SSH) remote login, and port number 23 is for telnet. An example of a socket program 
in Java is shown in the following:

/* Client.java sends a request to Server to do a computation */
/*Author: Amlan Bhattacahrya*/
import java.net.*;
import java.io.*;

class Client {
public static void main (String []args) {
try {
Socket sk = new Socket(args[0], Integer.parseInt(args[1]));
/* BufferedReader to read from the socket */
BufferedReader in = new BufferedReader (new InputStreamReader(sk.
 getInputStream ()));
/* PrintWriter to write to the socket */
PrintWriter out = new PrintWriter(sk.getOutputStream(), true);
/*Sending request for computation to the server from an imaginary 
 getRequest() method */
String request = getRequest();
/* Sending the request to the server */
out.println(request);
/* Reading the result from the server */
String result = in.readLine();
System.out.println(“ The result is ” + result);
}
catch(IOException e) {
System.out.println(“ Exception raised: ” + e);
}
}
}
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/* Server.java computes the value of a request from a client */
import java.net.*;
import java.io.*;

class Server {
public static void main (String []args) {
try {
ServerSocket ss = new ServerSocket(2000);
while (true) {
/* Waiting for a client to connect */
Socket sk = ss.accept();
/* BufferedReader to read from the socket */
BufferedReader in = new BufferedReader(new InputStreamReader(sk.
getInputStream ()));

/* PrintWriter to write to the socket */
PrintWriter out = new PrintWriter(sk.getOutputStream(), true);
/*Reading the string which arrives from the client */
String request = in.readLine();
/*Performing the desired computation via an imaginary
 doComputation() method */
String result = doComputation(request);
/* Sending the result back to the client */
out.println(result);
}
}
catch(IOException e) {
System.out.println(“ Exception raised: ” + e);
}
}
}

2.3 NAMING
In this section, we look into the important middleware service of naming built on top of 
TCP/IP or UDP/IP. A name is a string of characters or bytes, and it identifies an entity. The 
entity can be just about anything—it can be a user, or a machine, or a process, or a file. 
An example of a name is the URL of a website on the WWW. Naming is a basic service 
using which entities can be identified and accessed only by name, regardless of where they 
are located. A user can access a file by providing the filename to the file manager. To log 
in to a remote machine, a user has to provide a login name. On the WWW, the Domain 
Name Service (DNS) maps domain names to IP addresses. Users cannot send emails to one 
another unless they can name one another by their email addresses. Note that an address 
can also be viewed as a name. The ARP uses the IP address to look up the MAC address of 
the receiving machine.

Each name must be associated with a unique entity, although a given entity may have 
different aliases. As an example, consider the name Alice. Can it be associated with a 
unique person in the universe? No. Perhaps Alice can be identified using a unique phone 
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number, but Alice may have several telephone lines, so she may have several phone num-
bers. If Alice switches her job, then she can move to a new city, and her phone number will 
change. How do we know if we are communicating with the same Alice?

This highlights the importance of location independence in naming. Notice that mobile 
phone numbers are location independent. The email addresses in Gmail or Hotmail 
accounts are also not tied to any physical machine and are therefore location independent. 
A consistent naming scheme, location independence, and a scalable naming service are 
three cornerstones of a viable naming system for distributed applications.

A naming service keeps track of a name and the attributes of the object that it refers 
to. Given a name, the service looks up the corresponding attributes. This is called name 
resolution. For a single domain like a LAN, this is quite simple. However, on the Internet, 
there are many networks and multiple domains,* so the implementation of a name service 
is not trivial.

Names follow a tree structure, with the parent being a common suffix of the names of 
the subtree under it. Thus, cs.uiowa.edu is a name that belongs to the domain uiowa.edu. 
The prefix cs for the computer science department can be assigned only with permission 
from the administrators of the domain uiowa.edu. However, for the names hp.cs.uiowa.edu 
or linux.cs.uiowa.edu, it is the system administrator of the computer science department 
who assigns the prefixes hp or linux. Two different name spaces can be merged into a single 
name space by appending their name trees as subtrees to a common parent at a higher 
level. Figure 2.5 shows a naming tree for the generation of email ids. The leaves reflect the 
names of the users.

* On a single domain, a single administrative authority has the jurisdiction of assigning names.
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FIGURE 2.5 A naming hierarchy.
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2.3.1 Domain Name Service

Consider the task of translating a fully qualified name cs.uiowa.edu. DNS servers are logi-
cally arranged in a hierarchy that matches the naming hierarchy. Each server has authority 
over a part of the naming hierarchy. A root server has authority over the top-level domains 
like .edu, .com, .org, and .gov. The root server for .edu does not know the names of the com-
puters at uiowa.edu, but it knows how to reach the server. An organization can place all its 
domain names on a single server or place them on several different servers.

When a DNS client needs to look up a name, it queries DNS servers to resolve the name. 
Visualize the DNS as a central table that contains more than a billion entries of the form 
(name, IP address). Clearly, no single copy of such a table can be accessed by millions of 
users at the same time. In fact, no one maintains a single centralized database of this size 
anywhere. It operates as a large distributed database. For the sake of availability, different 
parts of this table are massively replicated and distributed over various geographic loca-
tions. There is a good chance that a copy of a part of the DNS service is available with your 
Internet service provider or the system administrator of your organization. Each server 
contains links to other domain name servers. DNS is an excellent example of how replica-
tion enhances availability and scalability.

To resolve a name, each resolver places the specified name into a DNS request message 
and forwards it to the local server. If the local server has sole authority over the requested 
name, then it immediately returns the corresponding IP address. This is likely when you 
want to send a message to your colleague in the same office or the same institute. However, 
consider a user from uiowa.edu looking for a name like boomerang.com that is outside the 
authority of uiowa’s local DNS server. In this case, the local server becomes a client and 
forwards the request to an upper-level DNS server that deals with .edu. However, since 
no server in .edu knows which other server has the authority over boomerang.com, a sim-
ple solution is to send the request to the root server. The root server may not have direct 
authority, but it knows the address of the next level server that may have the authority. In 
this manner, the request propagates through a hierarchy of servers and finally reaches the 
one that has the authority over the requested name. The returned IP address eventually 
reaches the resolver via the return path.

The name servers for the top-level names do not change frequently. In fact, the IP 
addresses of the root servers will rarely change. How does the root server know which 
server might have authority over the desired domain boomerang.com? At the time of 
domain registration, the registrant informs the DNS registry about the IP address of the 
name servers that will have authority over this domain. As new subdomains are added, the 
registry is updated.

The mechanism presented earlier will be unworkable without replication and caching 
at various levels. With millions of users simultaneously using the WWW, the traffic at or 
near the root servers will be so enormous that the system will break down. Replication of 
the root servers is the first step to reduce the overload. Depending on the promptness of 
the response, the DNS server responsible for the local node uses one of the root servers. 
More importantly, each server has a cache that stores a copy of the names that have been 
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recently resolved. With every new lookup, the cache is updated unless the cache already 
contains that name. Before forwarding a name to a remote DNS server, the client cache is 
first looked up. If the name is found there, then the translation is the fastest.

The naming service exhibits good locality—a name that has just been resolved is likely 
to be accessed again in the near future. Naturally, caching expedites name resolution, and 
local DNS servers are able to provide effective service.

The number of levels in a domain name has an upper bound of 127, and each label in the 
name can contain up to 63 characters, as long as the whole domain name does not exceed a 
total length of 255 characters. But in practice, some domain registries require a shorter limit.

2.3.2 Naming Service for Mobile Clients

Mapping the names of mobile clients to addresses is tricky, since their addresses can 
change without notice. A simple method for translation uses broadcasting. To look up 
Alice, broadcast the query Where is Alice? The machine that currently hosts Alice or the 
access point to which Alice is connected will return its address in response to the query. 
On Ethernet-based LANs, this is the essence of the ARP, where the IP address is used to 
look up the MAC address of a machine having that IP address. While this is acceptable on 
Ethernets where broadcasts are easily implemented by the available hardware, on larger 
networks, this is inefficient. In such cases, a location service fills the gap.

Location service: The naming service will first convert each name to a unique identifier. 
For example, the naming service implemented through a telephone directory will always 
map your name to your local telephone number. A separate location service will accept this 
unique identifier as the input and return the current address of the client (in this example, 
the client’s current telephone number).

While the ARP implements a simple location service, a general location service relies 
on message redirection. The implementation is comparable to call forwarding. Mobile IP 
uses a home agent for location service. While moving away from home or from one loca-
tion to another, the client updates the home agent about her current location or address. 
Communications to the client are directed as a care-of address to the home agent. The 
home agent forwards the message to the client and also updates the sender with the current 
address of the client.

2.4 REMOTE PROCEDURE CALL
Consider a server providing service to a set of clients. In a trivial setting when the clients 
and the server are distinct processes residing on the same machine, the communication 
uses nothing more than a system call. As an example, assume that a server allocates mem-
ory to a number of concurrent processes. The client can use two procedures: allocate and 
free. Procedure allocate(m) allocates m blocks of memory to the calling client by return-
ing a pointer to a free block in the memory. Procedure free(addr, m) releases m blocks of 
memory from the designated address addr. Being on the same machine, the implementa-
tion is straightforward. However, in a distributed system, there is no guarantee (and in fact 
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it is unlikely) that clients and servers will run on the same machine. Procedure calls can 
cross machine boundaries and domain boundaries. This makes the implementation of the 
procedure call much more complex. A remote procedure call (RPC) is a procedure call that 
helps a client communicate with a server running on a different machine that may belong to 
a different network and a different administrative domain.* Gone is the support for shared 
memory. Any implementation of RPC has to take into account the passing of client’s call 
parameters to the server machine and returning the response to the client machine.

2.4.1 Implementing RPC

The client calling a remote procedure blocks itself until it receives the result (or a message 
signaling completion of the call) from the server. Note that clients and servers have differ-
ent address spaces. To make matters worse, crashes are not ruled out. To achieve transpar-
ency, the client’s call is redirected to a client stub procedure in its local operating system. 
The stub function provides the local procedure call interface to the remote function. First, 
the client stub (1) packs the parameters of the call into a message and (2) sends the message 
to the server. Then the client blocks itself. The task of packing the parameters of the call 
into a message is called parameter marshaling.

On the server side, a server stub handles the message. Its role is complementary to the 
role of the client stub. The server stub first unpacks the parameters of the call (this is known 
as unmarshaling) and then calls the local procedure. The result is marshaled and sent back 
to the client’s machine. The client stub unmarshals the parameters and returns the result 
to the client (Figure 2.6). The operation of the stubs in an RPC is summarized as follows:

Client Stub Server Stub (Repeats the Following)
Pack parameters into a message Do no message → skip od
Send message to remote machine Unpack the call parameters
Do no result → skip od* Call the server procedure
Receive result and unpack it Pack result into a message
Return to the client program Send it to the client

* Of course, RPC can be trivially used to communicate with a server on the same machine.
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FIGURE 2.6 An RPC.
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The lack of similarity between the client and server machines adds a level of complexity 
to the implementation of RPC. For example, the client machine may use the big-endian for-
mat, and the server machine may use the little-endian format. Passing pointers is another 
headache since the address spaces are different. To resolve such issues, the client and the 
server need to have a prior agreement regarding RPC protocols.

The synchronization between the client and the server can take various forms. While 
the previous outline blocks the client until the result becomes available, there are non-
blocking versions too. In a nonblocking RPC, the client continues with unrelated activi-
ties after initiating the RPC. When the server sends the result, the client is notified, and it 
accepts the result.

Finally, network failures add a new twist to the semantics of RPC. Assume that the 
message containing a client’s RPC is lost en route the server. The client has little alterna-
tive to waiting and reinitiating the RPC after a time-out period. However, if for some 
reason the first RPC is not lost but stuck somewhere in the network, then there is a chance 
that the RPC may be executed twice. In some cases, it makes little difference. For example, 
if the RPC reads the blocks of a file from a remote server, then the client may not care if 
the same blocks are retrieved more than once. However, if the RPC debits your account in 
a remote bank and the operation is carried out more than once, then you will be unhappy. 
Some applications need the at-least-once semantics, whereas some others need the at-
most-once semantics or the exactly once semantics.

2.4.2 Sun ONC/RPC

To implement client–server communication in the network file service, Sun Microsystems* 

developed the open network computing RPC (ONC/RPC) mechanism, which is also pack-
aged with many UNIX installations. Client–server communication is possible through 
either UDP/IP or TCP/IP. An interface definition language (called external data represen-
tation [XDR]) defines a set of procedures as a part of the service interface. Each interface 
has a unique program number and a version number, and these are available from a central 
authority. Clients and servers must verify that they are using the same version number. 
These numbers are passed on as a parameter in the request message from the client to the 
server. Sun ONC uses an RPC compiler (rpcgen) that automatically generates the client and 
server stubs.

Sun RPC allows a single argument to be passed from the client to the server and a 
single result from the server to the client. Accordingly, if there are multiple parameters, 
then they have to be passed on as a structured variable. At the server end, a service 
demon process called port mapper receives the RPC request. Clients can easily locate 
the port mapper since it is always on a designated port (port 111). ONC identifies each 
procedure by three parameters: program number, version number, and procedure number. 
Procedure 0 is the null procedure. The client queries the port mapper to find out the 
port number of the program and its version number. The port mapper binds the RPC to 

* Now acquired by Oracle.
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designated ports on the client and the server machines. Many different types of authen-
tications can be incorporated in ONC/RPC—these include the traditional (uid, gid) of 
UNIX to the Kerberos type authentication service (see Chapter 19).

2.5 REMOTE METHOD INVOCATION
Remote method invocation (RMI) is a generalization of RPC in an object-oriented envi-
ronment. The object resides on the server’s machine that is different from the client’s 
machine. This is known as remote object. An object for which the instance of the data 
associated with it is distributed across machines is known as a distributed object. An 
example of a distributed object is an object that is replicated over two or more machines. 
A remote object is a special case of a distributed object where the associated data are avail-
able on one remote machine.

To realize the scope of RMI (vis-à-vis RPC), recall the implementation of an RPC 
using sockets. In RPC, objects are passed by value; thus, the current state of the remote 
object is copied and passed from the server to the client, necessary updates are done, 
and the modified state of the object is sent back to the server. If multiple clients try to 
concurrently access/update the remote object by invoking methods in this manner, then 
the updates made by one client may not be reflected in the updates made by another cli-
ent, unless such updates are serialized. In addition, the propagation of multiple copies 
of the remote object between the server and the various clients will consume significant 
bandwidth of the network.

RMI solves these problems in a transparent way. The various classes of the java.rmi 
package allow the clients to access objects residing on remote hosts, as if, by reference, 
instead of by value. Once a client obtains a reference to a remote object, it can invoke the 
methods on these remote objects as if they existed locally. All modifications made to the 
object through the remote object reference are reflected on the server and are available to 
other clients. The client is not required to know where the server containing the remote 
object is located—it only invokes a method through an interface called a proxy. The proxy 
is a client stub responsible for marshaling the invocation parameters and unmarshaling 
the results from the server (Figure 2.7). On the server side, a server stub called a skeleton 
unmarshals the client’s invocations, invokes the desired method, and marshals the results 
back to the client. For each client, there is a separate proxy, which is a separate object in the 
client’s address space.

When multiple clients concurrently access a remote object, the invocations of the 
methods are serialized, as in a monitor.* Some clients are blocked until their turns 
come, while others make progress. The implementation of the serialization mechanism 
is trivial for local objects, but for remote objects, it is tricky. For example, if the server 
handles the blocking and the current client accessing the remote object crashes, then 
all clients will be blocked forever. On the other hand, if clients handle blocking, then a 
client needs to block itself before its proxy sends out the method call. How will a client 

* A synchronization mechanism originally invented by C.A.R. Hoare and Per Brinch Hansen.
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know if another client has already invoked a method for the remote object? Clearly, the 
implementation of serializability for remote objects requires additional coordination 
among clients.

Java RMI passes local and remote objects differently. All local objects are passed by 
value, while remote objects are passed by reference. While calling by value, the states of 
objects are explicitly copied and included in the body of the method call. An example of 
a call by reference is as follows: Each proxy contains (1) the network address of the server 
S1 containing a remote object X and (2) the name of the object X in that server. As a part 
of an RMI in another server S2, the client passes the proxy (containing the reference to X) 
to the server S2. Now S2 can access X on S1. Since each process runs on the same Java vir-
tual machine, no further work is required following the unmarshaling of the parameters 
despite the heterogeneity of the hardware platforms.

2.6 MESSAGES
Most distributed applications are implemented using message passing. The messaging layer 
is logically located just above the TCP/IP or the UDP/IP layer, but below the application 
layer. The implementation of sockets at the TCP or the UDP layer helps processes address 
one another using specific socket addresses.

2.6.1 Transient and Persistent Messages

Messages can be transient or persistent. In transient communication, a message is lost 
unless the receiver is active at the time of the message delivery and retrieves it during the 
life of the application. An example is the interprocess communication via message buffers 
in a shared memory multiprocessor. In persistent communication, messages are not lost, 
but saved in a buffer for possible future retrieval. Recipients eventually receive the mes-
sages even if they were passive at the time of message delivery. An example is email com-
munication. Messages are sent from the source to the destination via a sequence of routers, 
each of which manages a message queue.
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FIGURE 2.7 Remote object invocation scheme.
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2.6.2 Streams

Consider sending a video clip from one user to another. Such a video clip is a stream of 
frames. In general, streams are sequences of data items. Communication using streams 
requires a connection to be established between the sender and the receiver. In streams 
for multimedia applications, the QoS is based on the temporal relationship (like the num-
ber of frames per second or the propagation delay) among items in the stream, and its 
implementation depends on the available network bandwidth, buffer space in the routers, 
and processing speeds of the end machines. One way to guarantee the QoS is to reserve 
appropriate resources before communication starts. RSVP is a transport-level protocol for 
reserving resources at the routers.

2.7 WEB SERVICES
Web services provide a different way of using the Internet for a variety of applications 
based on machines communicating with one another over the WWW. One can design an 
application on a machine by using data from the website hosted by a different machine. For 
example, a user can implement a service on her smartphone using a city transit’s website 
to obtain information about the latest bus schedule and set an alarm to remind about the 
departure time for catching the bus at a particular stop. Another user can design an appli-
cation by pulling data from the website of a popular restaurant, so that whenever they will 
have her special dish for dinner on the menu, she will receive a text message. Web services 
are a form of middleware that helps to integrate applications. They facilitate applications 
talking to one another.

Historically, Microsoft pioneered web services as a part of their .NET initiative. 
Today, most web services are based on XML that is widely used for cross-platform data 
 communication—these include simple object access protocol (SOAP); web service descrip-
tion language (WSDL) and universal description, discovery, and integration specification 
(UDDI); and Java web services.

WSDL describes the public interface to the web service. It is an XML-based service 
description that describes how a client should communicate using the web service. These 
include protocol bindings and message formats required to interact with the web services 
listed in its directory. A client can find out what functions are available on the web service 
and use SOAP to make the function call.

SOAP allows a one-way message containing a structured data to be sent from one pro-
cess to another using any transport protocol like TCP or HTTP or SMTP. The message 
exchange is completed when the recipient sends a reply back to the sender. One can use a 
Java API for an XML-based RPC implementation using SOAP to make RPCs on the server 
application. A standard way to map RPC calls to SOAP messages allows the infrastructure 
to automatically translate between method invocations and SOAP messages at run time, 
without redesigning the code around the web service platform.

XML is virtually a ubiquitous standard. The attention is now focused on the next level 
of standards derived from XML—UDDI, WSDL, and SOAP. The rapid growth of web ser-
vices to access the information stored in diverse databases makes some people wary about 
privacy questions.
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2.8 EVENT NOTIFICATION
Event notification systems help establish a form of asynchronous communication among 
distributed objects on heterogeneous platforms and have numerous applications. An exam-
ple is the publish–subscribe middleware. Consider the airfares that are regularly published 
by the different airlines on the WWW. You are planning a vacation in Hawaii, so you may 
want to be notified of an event when the round-trip airfare from your nearest airport to 
Hawaii drops below $400. This illustrates the nature of publish–subscribe communication. 
Here, you are the subscriber of the event. Neither publishers nor subscribers are required to 
know anything about one another, but communication is possible via a brokering arrange-
ment. Such event notification schemes are similar to interrupts or exceptions in a central-
ized environment. By definition, they are asynchronous.

Here are a few other examples. A smart home may send a phone call to its owner away 
from home whenever the garage door is open, or there is a running faucet, or there is a 
power outage. In a collaborative work environment, processes can resume the next phase 
of work, when everyone has completed the current phase of the work—these can be noti-
fied as events. In an intensive care unit of a medical facility, physicians can define events 
for which they need notification. Holders of stocks may want to be notified whenever the 
price of their favorite stock goes up by more than 5%. An airline passenger would like to be 
notified via an app in her smartphone if the time of the connecting flight changes.

Apache River (originally Jini developed by Sun Microsystems) provides event notifi-
cation service for Java-based platforms. It allows subscribers in one Java virtual machine 
(JVM) to receive notification of events of interest from another JVM. The essential com-
ponents are as follows:

 1. An event generator interface, where users may register their events of interest.

 2. A remote event listener interface that provides notification to the subscribers by 
invoking the notify method. Each notification is an instance of the remote event class. 
It is passed as an argument to the notify method.

 3. Third-party agents play the role of observers and help coordinate the delivery of simi-
lar events to a group of subscribers.

Apples’s iOS running on iPhones or iPads uses the push notification service for sending 
notification of events to users via a short text message or a sound byte.

2.9 VIRTUALIZATION: CLOUD COMPUTING
Cloud computing is an environment in which your data and/or programs are not stored or 
managed by your own machine, but done by a third party: the cloud, who offers this as a 
service. You can access your data or results of your computation through a browser that is 
a part of every computer system. Cloud computing is the convergence of several technolo-
gies, like distributed computing, cluster computing, and web services.

Even before the term cloud computing was coined, the concept was getting momentum 
under various names. All the web applications are now included under cloud computing. 
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Many of us use Google mail or Yahoo mail to store and access email messages. These emails are 
stored in the servers managed by the respective companies. Google Doc allows users to 
upload, edit, and retrieve documents to Google’s data servers for the purpose of sharing. 
YouTube hosts millions of user-uploaded videos and allows us to store and share our videos 
with others without any cost. Many of us routinely use Flickr and Picasa to upload and share 
millions of our personal digital photographs. Social networking sites like Facebook allow 
members to post pictures and videos that are stored in the site’s servers.

Not only for the dedicated cloud enthusiasts but also for the average users, Amazon’s 
Elastic Computing Cloud (EC2) virtual computing environment might be the answer to 
all the needs. Rather than purchasing servers, software, network equipment, and so on, 
users would buy into a fully outsourced set of online services instead. The users need not 
care about where these servers are geographically located—they are all part of the cloud, 
residing in a single data center or distributed across a number of data centers and con-
trolled by a single organization.* This not only subscribes to the concept of virtualization 
but also reinforces the concept of pay-as-you-use or utility computing, where the users pay 
a metered price in exchange for the service. There is no upfront investment and it allows 
flexible scaling of resources. Above all, the current prices for such services (as of December 
2013) are extremely reasonable—for an average student user job running for an hour or so, 
it costs pennies only.

To use a cloud service like Amazon’s EC2, note that Amazon web service (AWS) is the 
umbrella of all services provided by Amazon, including EC2. So once a user signs up for 
AWS, she can go to the EC2 link to create her virtual server and access it using her remote 
desktop connection.

2.9.1 Classification of Cloud Services

Some cloud platforms offer a mix of proprietary development and application packages, 
while others are simply metered services. To distinguish between the various forms, cloud 
services have been classified into software-as-a-service (SaaS), platform-as-a-service (PaaS), 
and infrastructure-as-a-service (IaaS), respectively:

SaaS: It is the most basic among these services. Think of Google Docs. Creating a Google 
account is free. Once you have an account, all you have to do is log in to google.com/docs and 
you instantly have access to a powerful word processor, spreadsheet application, and presen-
tation creator. Google makes all these services available to you, and you can manage every-
thing from the web browser without installing anything else on your machine. Dropbox, 
Salesforce.com, etc., are applications that qualify as SaaS and the basic services are free.

PaaS: PaaS facilitates the development of an application that will run in a specific cloud 
environment. One can utilize the available infrastructure and tools of an established envi-
ronment. This also gives the developer the ability to quickly make her app available to a 

* These are different from grids that are a less tightly coupled federation of heterogeneous resources under the control 
different organizations. As a result, grid computing must deal with verifying credentials across multiple administrative 
domains.
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wide audience. For example, on the Facebook platform, developers can write new applica-
tions and make them available to other users of that platform. Google Apps provides APIs 
and functionalities that facilitate developers to build web applications by leveraging its dif-
ferent services such as maps and calendar. These are very handy for developing lightweight 
web applications.

IaaS: This is the most comprehensive cloud platform and is mainly used by full-time devel-
opers or large-scale enterprise customers or by occasional users who have the IT skills but 
don’t have the infrastructure. While SaaS allows usage of cloud apps, and PaaS allows you to 
develop apps, IaaS gives you infrastructure for developing, running, and storing your apps 
in cloud environments. The benefit of IaaS is the virtually limitless storage and computing 
power available to the developers without having any physical hardware on site. Amazon 
EC2 is a great example of IaaS. From the smallest application to full-scale websites needed 
for launching a business, EC2 provides the necessary cloud infrastructure. Users have the 
freedom to develop using an assortment of tools, from MySQL to Ruby on Rails, and can 
choose from several Linux or Windows environments.

With the growth of cloud computing, the number of data centers is also growing at a 
rapid pace. Each data center is equipped with thousands of processors whose collective 
computing speed adds up to the petaflop range, virtually unlimited storage, and high-
speed networking facility. Many of these data centers are automatically and remotely man-
aged without any human operator being around. Energy is a big budget item for these data 
centers, as well as water usage that is needed for cooling. The enormous volume of water 
required to cool high-density server farms is making water management a growing prior-
ity for data center operators. A 15 MW data center can use up to 360,000 gal of water a 
day [M09].

2.9.2 MapReduce

One significant feature of modern day distributed systems is the large volume of data that 
they are expected to handle. Photos and audio and video recordings are continuously cre-
ated and passed to the social network sites. Amazon and eBay routinely deal with enor-
mous volumes of data from all over the world. The search engines Google, Yahoo, and 
Bing routinely crunch enormous amount of data to process user queries from all over the 
world. Massively parallel data processing engines have become indispensable for gener-
ating prompt responses in these scenarios. To crunch massive volumes of data, Google 
invented MapReduce in 2004, and in 2007, Yahoo made it into the open-source project 
Hadoop that is essentially an operating system to enable MapReduce programs to run on 
computing clusters.

MapReduce algorithms efficiently harness the built-in parallelism exhibited by many 
large-scale or data-intensive problems. To design such algorithms, one has to start with the 
two basic operations: map and reduce. The function map applies a specific function to all 
the elements of a list, and their execution is meant to run in parallel. Each process or thread 
is assigned one such task. The function reduce is an aggregation operation that takes the 
output of the map operation and aggregates to a final result.
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The basic data structure in MapReduce is the <key, value> pairs. If x = 5, then the key 
is the integer variable x, and its value is 5. For a graph, the key may be the identifier of a 
node and its value may be the list of its neighbors. For a web page, the key is its URL, and 
the value is the HTML code for that page. In the succeeding text, we illustrate a typical 
application of MapReduce via an example: A directory D has a number of text files, each 
containing some text—our goal is to capture and count every occurrence of the word 
dog and every occurrence of the word cat in these two files and produce the cumulative 
result for each.

{Pseudocode for the word count problem}
1: Mapper (directory D; file f)
2: for every term “dog” in file f do
3: Output (“dog”, value 1)

1: Reducer (term “dog”; set of values)
2: total: = 0
3: for each t in set of values do
4: total: = total + t
5: Output (“dog”, total)

Several instances of mapper can run on different machines, and there can be another map-
ping task for the key cat. The execution framework of MapReduce guarantees that all val-
ues associated with the same key are brought together in the reducer via a shuffle stage. 
As a result, the word count algorithm adds all counts associated with each key, which is 
also a key–value pair. Thus, the basic framework of a MapReduce job can be summarized 
as follows:

Map: 〈key, value〉→ list of 〈key, value〉
 {This is the intermediate 〈key, value〉 pair}

Reduce: 〈key, list of values〉 → list of 〈key, value〉

In the earlier example, the output of the mapper for counting the occurrence of dog is 
a list, 〈dog, 1〉, 〈dog, 1〉, 〈dog, 1〉…, and the output of the mapper for counting the occur-
rence of cat is a list, 〈cat, 1〉, 〈cat, 1〉, 〈cat, 1〉…. The program will run across all files in a 
directory. After the completion of the mapping phase, the intermediate 〈key, value〉 pairs 
are exchanged between machines to send all values with the same key to a single reducer 
(shuffling). The reducer produces an output 〈dog, 524〉, 〈cat, 316〉, 〈cow, 23〉…. Figure 2.8 
illustrates this scheme.

It is important to realize that although MapReduce can be directly used for a large class 
of problems that exhibit embarrassingly parallel feature, many algorithms cannot be eas-
ily expressed as a single MapReduce job. Complex algorithms have to be decomposed into 
a sequence of jobs, and data routing has to be orchestrated so that the output of one job 
becomes the input to another job. These include iterative tasks that need to be repeated 
before convergence is reached.
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2.9.3 Hadoop

In the world of cluster-level parallelism, libraries implementing message-passing inter-
face (MPI), or language extensions like OpenMP for shared memory parallelism, are well 
known. These logical abstractions hide many details of synchronization and communi-
cations at the process level. However, for a smooth implementation of such abstractions, 
developers have to keep track of these aspects, as well as how resources are made available 
to workers. This applies to MapReduce too. Apache Hadoop is an open-source implemen-
tation of the infrastructure that MapReduce needs.

Hadoop uses the master–slave architecture. A master node (also called a NameNode) 
receives the job from the user. The input data are broken into pieces and stored in the 
Hadoop distributed file system (HDFS). Physically, these data pieces are scattered over 
a large number of nodes in the system. The master node assigns the components of the 
job (map processes) to the various slave nodes (also called DataNodes). Each slave con-
tributes some local storage and computational power to solve the problem. When the 
slave nodes complete their tasks, they return the results to the master. The master runs 
the reduce process to aggregate the pieces and generate the result. If necessary, the slave 
nodes may further subdivide the task and assign them to other slave nodes. Collectively, 
such an implementation involves thousands of computing nodes and can handle pet-
abytes of data. DataNode failures are automatically handled in this framework. Hadoop 
is written in Java.

Mapper Mapper Mapper Mapper

dog dog dogdog catcat cat cat

ReducerReducer Reducer

Shuffle

cow cow cowcow

dog, 524 cat, 316 cow, 23

FIGURE 2.8 The architecture of MapReduce: the mappers receive their inputs from the files that 
store data. Each box is physically mapped to a computing node.
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2.10 MOBILE AGENTS
A different mode of communication between processes is possible via mobile agents. 
A mobile agent is a piece of code that migrates from one machine to another. The code, 
which is an executable program, is called a script. In addition, agents carry data values 
or procedure arguments or interim states that need to be transported across machines. 
The use of an interpretable language like Tcl makes it easy to support mobile agent–based 
communication on heterogeneous platforms. Compared with messages that are passive, 
agents are active and can be viewed as messengers. Agent migration is possible via the fol-
lowing steps:

 1. The sender writes the script and calls a procedure submit with the parameters (name, 
parameters, target). The state of the agent and the parameters are marshaled and the 
agent is sent to the target machine. The sender either blocks itself or continues with 
an unrelated activity at its own site.

 2. The agent reaches the destination, where an agent server handles it. The server authen-
ticates the agent, unmarshals its parameters, creates a separate process or thread, and 
schedules it for the execution of the agent script.

 3. When the script completes its execution, the server terminates the agent process, 
marshals the state of the agent as well as the results of the computation if any, and 
forwards it to the next destination, which can be a new machine, or the sender. The 
choice of the next destination follows from the script.

Unlike an RPC that always returns to the sender, agents can follow a predefined 
itinerary or make autonomous routing decisions. Such decisions are useful when the 
next process to visit has crashed and the agent runs the risk of being trapped in a 
black hole. Mobile agents thus overcome the limitations of the traditional client–server 
architecture.

2.11 BASIC GROUP COMMUNICATION SERVICES
With the rapid growth of social networking and electronic commerce on the web, group-
oriented activities have substantially increased in recent years. Examples of groups are the 
following:

• The batch of students graduating from a high school in a given year

• The friends of a person on Facebook or Twitter

• The clients of a video distribution service

• A set of replicated servers forming a highly available service
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Group communication services include (1) a membership service that maintains a 
list of current members by keeping track of who joined the group, and which mem-
bers left the group (or crashed), and (2) various types of multicasts within the group. 
Group members can use such multicasts as primitives for implementing different kinds 
of services. One example is atomic multicast, which guarantees that regardless of fail-
ures, either all nonfaulty members receive the message or no one receives the message. 
Another example is an ordered multicast, where in addition to the atomicity property, 
all nonfaulty members are required to receive the messages in a specific order. Each of 
these multicasts has applications in the implementation of specific group services. We 
will elaborate these in Chapter 15.

2.12 CONCLUDING REMARKS
The ISO model is a general framework for the development of network protocols. Real-life 
protocol suites, however, do not always follow this rigid structure, but often, they can be 
mapped into the ISO framework. TCP/IP is by far the most widely used networking pro-
tocol today.

Middleware services help create an abstraction over the networking layers and relieve 
users of many intricacies of network programming on wide area networks (WANs). Without 
these services, the development of applications would have been slow and error prone. The 
open nature of the request brokering services like CORBA adds to the interoperability of 
the distributed applications. Future implementations will increase the efficiency of the ser-
vices with no need to rewrite the applications, as long as the interfaces remain unchanged.

2.13 BIBLIOGRAPHIC NOTES
An in-depth treatment of networking is available in Peterson and Davie’s book [PD96]. 
Gray’s book [G97] provides a detailed description of interprocess communication tools 
in Unix. Needham’s article [N93] is a great introduction to naming. Albitz and Liu’s 
book [AB01] describes the implementation of DNS. Birrell and Nelson [BN84] intro-
duced RPC. Several tutorials on Java RMI can be found in the Oracle’s website (Oracle 
acquired Sun Microsystems in 2010). Waldo [W98] presented a comparison between 
RPCs and RMIs. Arnold et al. [AOSW+99] described Jini (now called Apache River) 
event service. Gray [G96] and subsequently Kotz et al. [KGNT+97] introduced agent Tcl. 
The growth in web services and later cloud computing started with web 2.0 that includes 
blogs and social networking sites. Since the late 1990s, network bandwidth witnessed 
significant growth, and it opened up a window of opportunities. Salesforce.com led the 
idea of delivering enterprise solutions via a website. In 2002, Amazon took it to the next 
step by providing a suite of web services that makes storage and computation available 
to users through their browsers. In 2006, Amazon’s EC2 enabled entrepreneurs to rent 
computers as utilities and run their applications through browser-based interfaces. Dean 
and Ghemawat [DG04] introduced MapReduce as a divide-and-conquer-based method 
for tackling large data sets on clusters.
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EXERCISES
The following exercises ask you to study outside materials and investigate how communi-
cation takes place in the real world. The materials in this chapter provide some pointers 
and serve as a skeleton.

2.1  Study the domain hierarchy of your organization. Show how it has been divided into 
the various servers and explain the responsibility of each server.

2.2  You do net banking from your home for paying bills to the utility companies. Study 
and explain how the following communications take place.

2.3  Two processes P and Q communicate with one another. P sends a sequence of charac-
ters to Q. For each character sent by P, Q sends an ack back to P. When P receives the 
ack, it sends the next character. Show an implementation of the earlier interprocess 
communication using sockets.

2.4  Explain with an example why CSMA/CD cannot resolve media access contention in 
wireless networks and how the RTS–CTS signals used optionally with CSMA/CA 
resolve contention in the MAC layer.

2.5  Create an account with AWSs and learn how to use Amazon’s EC2. Then implement 
the following distributed system using EC2: A writer process W writes a stream of 
characters into a buffer of size 128, and a reader process R reads those characters 
from the buffer. There are two constraints—the writer W should be blocked when the 
buffer is full, and the reader R should be blocked when the buffer is empty. You can 
assume that only one of the two processes is active at any time.

2.6  Instant messaging is a popular tool on your laptop or smartphone for keeping up with 
your buddies. Explore how instant messaging works.

2.7  Check if your city transit system has a website. Develop an application that uses web 
services to find a connection from point A to point B at a given time.
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C h a p t e r  3

Models for Communication

3.1 NEED FOR A MODEL
A distributed computation involves a number of processes communicating with one 
another. We observed in Chapter 2 that interprocess communication mechanism is fairly 
complex. If we want to develop algorithms or build applications for a distributed system, 
then the details of interprocess communication can be quite overwhelming. In general, 
there are many dimensions of variability in distributed systems. These include network 
topology, interprocess communication mechanisms, failure classes, and security mecha-
nisms. Models are simple abstractions that help understand the variability—abstractions 
that preserve the essential features, but hide the implementation details from observers 
who view the system at a higher level. Obviously, there can be many different models cov-
ering many different aspects. For example, a network of static topology does not allow 
the deletion or addition of nodes or links, but a dynamic topology allows such changes. 
Depending on how models are implemented in the real world, results derived from an 
abstract model can be applied to a wide range of platforms. Thus, a routing algorithm 
developed on an abstract model can be applied to both ad hoc wireless LAN and sensor 
network without much extra work. A model is acceptable, as long as its features or specifi-
cations can be implemented, and these adequately reflect the events in the real world.

3.2 MESSAGE-PASSING MODEL FOR INTERPROCESS COMMUNICATION
Interprocess communication is one dimension of variability in a distributed system. Two 
primary models that capture the essence of interprocess communication are the message-
passing model and the shared-memory model. In this section, we highlight the properties 
of a message-passing model.

3.2.1 Process Actions

Represent a distributed system by a graph G = (V, E), where V is a set of nodes and E is a 
set of edges joining pairs of nodes. Each node is a sequential process, and each edge corre-
sponds to a communication channel between a pair of processes. Unless otherwise stated, 
we assume the graph to be directed—an edge from node i to node j will be represented by 
the ordered pair (i, j). An undirected edge between a pair of processes i, j is equivalent to a 
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pair of directed edges, one from i to j and the other from j to i. The actions by a node can 
be divided into the following four classes:

 1. Internal action: An action is an internal action when a process performs computations in 
its own address space resulting in the modification of one or more of its local variables.

 2. Communication action: An action is a communication action when a process sends a 
message to another process or receives a message from another process.

 3. Input action: An action is an input action when a process reads data from sources 
external to the system. For example, in a process control system, one or more pro-
cesses can input the values of environmental parameters monitored by sensors. These 
data can potentially influence the operation of the system under consideration.

 4. Output action: An action is an output action when it controls operations that are 
external to the system. An example is the setting of a flag or raising an alarm. For a 
given system, the part of the universe external to it is called its environment.

Messages propagate along directed edges called channels. Communications are assumed 
to be point to point—a multicast is a set of point-to-point messages originating from a 
designated sender process. Channels may be reliable or unreliable. In a reliable channel, 
the loss or corruption of messages is ruled out. Unreliable channels will be considered in 
Chapter 12. In the rest of this chapter, we assume reliable channels only.

3.2.2 Channels

The following axioms form a sample specification for a class of reliable channels:

Axiom 1

Every message sent by a sender is received by the receiver, and every message received by a 
receiver is sent by some sender in the system.

Axiom 2

Each message has an arbitrary but finite, nonzero propagation delay.

Axiom 3

Each channel is a FIFO channel. Thus, if x and y are two messages sent by one process P to 
another process Q and x is sent before y, then x is also received by Q before y.

We make no assumption about the upper bound of the propagation delay. Let c be a 
channel (Figure 3.1) from process P to process Q, s(c) be the sequence of messages sent by 
process P to process Q, and r(c) be the sequence of messages received by Q. Then it follows 
from the earlier axioms that at any moment, r(c) is a prefix of s(c).
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The axioms presented earlier are true for our model only, but they may not be true for all 
distributed systems. Some clarification about these axioms is given in the following. Axiom 1 
rules out loss of messages as well as reception of spurious messages. When channels are 
unreliable, Axiom 1 may be violated at the data link or the transport layer. Recovery of lost 
messages is an important aspect of link and transport layer protocols.

In Axiom 2, the absence of a predefined upper bound for the propagation delay is an 
important characteristic of asynchronous channels. It also weakens the computational 
model. In reality, depending on the nature of the channel and the distance between the 
sender and the receiver, it is sometimes possible to specify an upper bound on the propa-
gation delay. For example, consider a system housed inside a small room, and let signals 
directly propagate along electrical wires from one process to another. Since electrical sig-
nals travel approximately 1 ft/ns, the propagation delay across a 20 ft link inside the room 
will apparently barely exceed 20 ns.* However, if the correct operation of a system depends 
on the upper bound of the propagation delay, then the correctness of the same system may 
be jeopardized when the length of the link is increased to 300 ft. The advantage of weaken-
ing the model is that a system designed for channels with arbitrarily large but finite delay 
continues to behave correctly regardless of the actual value of the propagation delay. Delay 
insensitivity thus adds to the robustness and the universal applicability of the system.

Axiom 3 is not necessarily satisfied by a datagram service—packets may arrive out of 
order at the receiving end. In order that our model becomes applicable, it is necessary to 
assume the existence of a layer of service that resequences the packets before these are 
delivered to the receiver process. We want to carefully separate the intrinsic properties of 
our model from its implementation in an actual application environment.

How many messages can a channel hold? There are two possible ways to abstract this: the 
capacity of a channel may be either an infinite or finite. With a channel of infinite capac-
ity, the sender process can send messages as frequently as it wants—the channel is never 
blocked (or it never drops messages due to storage limitations) regardless of the slowness of 
the receiver process. With a finite-capacity channel, however, the channel may sometimes be 

* In most cases of interprocess communication, the major part of the delay is not due to the propagation time along the 
wire, but due to the handling of the send and the receive operations by the various layers of the network protocols, as well 
as delay caused by the routers.

P

Q
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Router

Router

FIGURE 3.1 Channel from a process P to a process Q.
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full, and attempts to send messages may either block the sender or return an error message 
or cause messages to be dropped. Although any real channel has a finite capacity, this capac-
ity may often be so large that the sender is rarely affected. From this perspective, arbitrarily 
large capacity of channels is a useful simplification, and not an unreasonable abstraction.

A channel is an interesting type of shared data object. It differs from a memory cell in many 
ways. For example, it is not possible to write anything (in the sense that a traditional write 
operation erases the old contents of a memory cell) into the channel—one can only append 
something to the existing contents of the channel. An immediate consequence of this limita-
tion is that it is not possible to unsend a message that has already been sent along a channel. 
Similarly, one cannot read the contents (traditional reads are nondestructive) of a channel—one 
can only read and delete the header element from a channel. Other than append and delete, it is 
tempting to assume the existence of a Boolean function empty(c) that returns true if channel c 
is empty. However, it is far from trivial to determine if a channel is empty at a given moment.

3.2.3 Synchronous versus Asynchronous Systems

Another dimension of variability in distributed systems is synchrony and asynchrony. The 
broad notion of synchrony is based on senders and receivers maintaining synchronized clocks 
and executing actions with a rigid temporal relationship. However, a closer view reveals many 
aspects of synchrony, and the transition from a fully asynchronous to a fully synchronous model 
is a gradual one. Some of the behaviors characterizing a synchronous system are as follows:

Synchronous clocks: In a system with synchronous clocks, the local clocks of every processor 
show the same time. The readings of a set of independent clocks tend to drift, and the difference 
grows over time. Even with atomic clocks, drifts are possible, although the extent of this drift 
is much smaller than that between clocks designed with ordinary electrical components. For 
less stringent applications, the domestic power supply companies closely mimic this standard, 
where a second is equal to the time for 60 oscillations of the alternating voltage (or 50 oscilla-
tions according to the European standard and also in Australian and Asian countries) entering 
our premises.* Since clocks can never be perfectly synchronized, a weaker notion of synchro-
nized clocks is that the drift rate of local clocks from real time has a known upper bound.

Synchronous processes: A system of synchronous processes takes actions in lockstep syn-
chrony, that is, in each step, all processes execute an eligible action. In real life, however, 
every process running on a processor frequently stumbles because of interrupts. As a result, 
interrupt service routines introduce arbitrary amounts of delay between the executions of 
two consecutive instructions, making it appear to the outside world as if instruction execu-
tion speeds are unpredictable with no obvious lower bound. Using a somewhat different 
characterization, a process is sometimes called synchronous, when there is a known lower 
bound of its instruction execution speed.

Even when processes are asynchronous, computations sometimes progress in phases or 
in rounds—in each phase or round, every process does a predefined amount of work, and 
no process starts the (i + 1)th phase until all processes have completed their ith phases. 

* These clock pulses are used to drive many of our older desktop and wall clocks, but now, it is obsolete.
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The implementation of such a phase-synchronous or round-synchronous behavior requires 
the use of an appropriate phase synchronization protocol.

Synchronous channels: A channel is called synchronous when there is a known upper 
bound on the message propagation delay along that channel. Such channels are also known 
as bounded-delay channels.

Synchronous message order: The message order is synchronous when the receiver pro-
cess receives messages in the same order in which sender process sent them (Axiom 3 in 
Section 3.2.2 satisfies this).

Synchronous communication: In synchronous communication, a sender sends a message 
only when the receiver is ready to receive it and vice versa. When the communication is 
asynchronous, there is no coordination between the sender and the receiver. The sender of 
message number i does not care whether the previous message (i − 1) sent by it has already 
been received. This type of send operation is also known as a nonblocking send operation. 
In a blocking send, a message is sent only when the receiver signals its readiness to receive 
the message. Like send, receive operations can also be blocking or nonblocking. In block-
ing receive, a process waits indefinitely long to receive a message that it is expecting from a 
sender. If the receive operation is nonblocking, then a process moves to the next task in case 
the expected message does not (yet) arrive and attempts to receive it later.

Synchronous communication involves a form of handshaking between the sender 
and the receiver processes. In real life, postal or email communication is a form of 
asynchronous communication, whereas a telephone conversation is a great example 
of a synchronous communication.

In [H78], Tony Hoare introduced the communicating sequential process (CSP) model—it 
adopts a version of synchronous communication, where a pair of neighboring processes com-
municates through a channel of zero capacity. A sender process P executes an instruction Q!x 
to output the value of its local variable x to the receiver process Q. The receiver process Q exe-
cutes the instruction P?y to receive the value from P and assign it to its local variable y. The 
execution of the instructions Q!x and P?y is synchronized, inasmuch as the execution of anyone 
of these two is blocked, until the other process is ready to execute the other instruction. More 
recent examples of synchronous communication are Ada rendezvous, RPCs [BN84], and RMI.

Note that of these five features, our message-passing model introduced at the beginning 
of this chapter assumed synchronous message order only.

3.2.4 Real-Time Systems

Real-time systems form a special class of distributed systems that are required to respond 
to inputs in a timely and predictable way. Timeliness is a crucial issue here, and usually, 
the cost of missing deadlines is high. Depending on the seriousness of the deadline, real-
time systems are classified as hard or soft. The air-traffic control system is an example of 
a hard real-time system where missed deadlines are likely to cost human lives. A vending 
machine is an example of a soft real-time system, where a delay in receiving an item after 
inserting the proper amount in coins can cause some annoyance to the customer, but noth-
ing serious will happen.
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3.3 SHARED VARIABLES
In the message-passing model, each process has a private address space. In an alternative model 
of computation, the address spaces of subsets of processes overlap, and the overlapped portion 
of the address space is used for interprocess communication. This model is known as the shared-
memory model. The shared-memory model has a natural implementation on tightly coupled 
multiprocessors. Traditionally, concurrent operations on shared variables are serialized, and 
the correctness of many shared-memory algorithms relies on this serialization property.

There are important and subtle differences between the message-passing and the shared-
memory models of computation. One difference is that in a shared-memory model, a single 
copy of a variable or a program code is shared by more than one process, whereas to share 
that variable in the message-passing model, each process must have an exclusive copy of it. 
Consequently, consistent serialization of updates is a nontrivial task.

Due to the popularity of shared variables, many computing clusters support DSM, an 
abstraction for sharing a virtual address space between computers that do not share physi-
cal memory. The underlying hardware is a multicomputer, and the computers communi-
cate with one another using message passing. The primary utility of DSM is to relieve the 
users of the intricate details of message passing and let them use the richer programming 
tools of parallel programming available for shared-memory systems.

Two variations of the shared-memory model used in distributed algorithms are (1) the 
state-reading model (also known as the locally shared variable model) and (2) the link reg-
ister model. In the state-reading model, any process can read, in addition to its own state, 
the state of each of its neighbors from which a channel is incident on it. However, such a 
process can update only its own state. Figure 3.2a illustrates the state-reading model, where 
processes 1 and 3 can read the state of process 2 and process 0 can read the state of process 1.

In the link register model, each link or channel is a single-reader single-writer register 
(Figure 3.2b). The sender writes into this register, and the receiver reads from that register. 
To avoid additional complications, the link register model also assumes that all read and 
write operations on a link register are serialized, that is, write operations never overlap 
with read operations.* A bidirectional link (represented by an undirected edge) consists of 
a pair of link registers.

* The behavior of registers under overlapping read or write operations is beyond the scope of this chapter.
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FIGURE 3.2 (a) The state-reading model: a directed edge (2, 3) means that 3 can read the state of 2. 
(b) The link register model: 1 and 3 access the information from the link registers R21 and R23, 
respectively, which are updated by 2. The contents of these registers are limited by how much 2 
wants to share with them.
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One difference between the earlier two models is that in Figure 3.2b, neighbors 
1 and 3 access the information from the link registers R21 and R23, respectively, and 
their contents are limited by how much process 2 wants to share with them. These may 
be different from the state of process 1. It also depends on when these register values 
are updated.

3.3.1 Linda

David Gelernter at Yale University developed Linda in 1985 [G85]. It is a concurrent pro-
gramming model using the concept of a shared tuple space, which is essentially a shared 
communication mechanism. The general principle is similar to blackboard systems used 
in artificial intelligence. Processes collaborate, by depositing and withdrawing tuples. 
Processes may not know each other or at least they do not directly communicate with 
each other. Communication is based on pattern matching, that is, a process may check 
for a needed tuple very much like the query-by-example paradigm in database systems 
and retrieve one or more tuples that satisfy the pattern. Depositing tuples is asynchro-
nous, while a querying process may choose to block itself until such time when a tuple 
is matched.

Linda tuples are unordered and accessed by six primitives. The primitive OUT and IN 
are used to deposit a tuple into the tuple space and extract a tuple from the tuple space—
these simulate the send and the receive operations, respectively. The primitive RD also 
receives a tuple, but unlike IN, it does not delete the tuple from the space. INP and RDP are 
nonblocking versions of IN and RD—these work like IN and RD when there are matching 
tuples, but return a false  otherwise. Finally, EVAL creates new processes and can be com-
pared with the Unix fork command.

The following is an example of a Linda program written as an extension of a C program. 
A master process delegates tasks to n slave processes. When all slaves finish their tasks, 
they output “done” into the tuple space. The master inputs this from the tuple space and 
then prints a message that all tasks have been completed.

/** main program**/
real_main(argc,argv)
int argc;
char *argv[];
{
      int nslave, j, hello();
      nslave = atoi (argv[1]);

      for (j = 0; j < nslave; j++)
      EVAL (“slave”, hello(j));
      for(j = 0; j < nslave; j++)
      IN(“done”);

     printf(“Task completed.\n”);
}
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/** subroutine hello **/
       int hello (i)
       int i;
{
       printf(“Task from number %d.\n”,i);
       OUT(“done”);
       return(0);
}

JavaSpace is an object coordination system that is based on Linda. Tuple space can be 
implemented as a distributed data structures, and parts of the space can be physically 
mapped on the local memory of the different processes in a network. Further details can 
be found in [CG89].

3.4 MODELING MOBILE AGENTS
A mobile agent is a program code that migrates from one process to another. Unlike a 
message that is passive, a mobile agent is an active entity that can be compared with a 
messenger. The agent code is executed at the host machine where the agent can interact 
with the variables of programs running on the host machine, use its resources, and take 
autonomous routing decisions. During migration, the process in execution transports its 
state from one machine to another while keeping its data intact. Two major categories 
of mobile agents are in use: some support strong mobility, and others don’t. With strong 
mobility, agents are able to transfer its control state from one machine to another—thus 
after executing instruction k in a machine A, the mobile agent can execute instruction 
(k + 1) in the next machine B. With weak mobility, the control state is not transferred—so 
at each host, the code executes without this information.

Mobile agents complement the existing technologies of interprocess communication. 
In applications involving very large databases, network bandwidth can be saved when a 
client sends a mobile agent to the database server with a few queries, instead of pulling huge 
volumes of data from the server to the client site. Mobile agents also facilitate disconnected 
modes of operation. Messages and mobile agents can coexist: while certain tasks use mes-
sage passing, a mobile agent can carry out the task of coordinating an activity across the 
entire network or in a fraction of it. Dartmouth’s D’Agents and IBM’s Aglets are two well-
known mobile agent systems.

A mobile agent with weak mobility can be modeled as follows: call the initiator of the 
agent its home. Each mobile agent is designated by (at least) three components (I, P, B). 
The first component I is the agent identifier and is unique for every agent. The second 
component P designates the agent program that is executed at every process visited 
by  it. The third component B is the briefcase and represents the data variables to be 
used by the agent. Two additional variables current and next keep track of the current 
location of the agent and the next process to visit. Here is an example of a computation 
using mobile agents: Consider the task of computing the lowest price of an item that is 
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being sold in n different stores. Let price(i) denote the price of the item in store i, and let 
the briefcase variable best denote the lowest price of the item among the stores visited 
by the agent so far. Treat each store as a process. To compute best, an initiator process 
sends a mobile agent to a neighboring process. Thereafter, the agent executes the follow-
ing program P at each site before returning home:

initially current = home; best = price(home),
 visit next; {next depends on a traversal algorithm}
 {after reaching a new host}
while current ≠ home do

if price(i) < best then best := price(i) else skip end if;
 visit next;
end while

It will take another traversal to disseminate the value of best among all the processes. 
Readers may compare the complexity of this solution with the corresponding solutions on 
the message-passing or the shared-memory model.

Agents can be itinerant or autonomous. In the itinerant agent model, the initiator loads 
the agent with a fixed itinerary that the agent is supposed to follow. For an autonomous 
agent, there is no fixed itinerary—at each step, the agent is required to determine which 
process it should visit next to get the job done.

In network management, a class of primitive agents mimicking biological entities 
like ants has been used to solve problems like shortest path computation and congestion 
control. The individual agents do not have any explicit problem-solving knowledge, but 
intelligent action emerges from the collective action by ants. White [WP98] describes the 
operation of ant-based algorithms.

3.5 RELATIONSHIP AMONG MODELS
While all models discussed so far are related to interprocess communication only, 
other models deal with other dimensions of variability. For example, failure models 
abstract the behavior of faulty processes and are discussed in Chapter 13. Models are 
important to programmers and algorithm designers. Before devising the solution to 
a problem, it is important to know the rules of the game. Two models A and B are 
equivalent, when there exists a 1-1 correspondence between the objects and operations 
of A and those of B.

3.5.1 Strong and Weak Models

Informally, one model A is considered stronger than another model B, when to implement 
an object (or operation) in A, one requires more than one object (or operation) in B. For 
example, a model that supports multicast is stronger than a model that supports point-to-
point communications, since ordinarily a single multicast is implemented using several 
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point-to-point communications.* The term stronger is also attributed to a model that has 
more constraints compared to those in another model (called the weaker model). In this 
sense, message- passing models with bounded-delay channels are stronger than message-
passing models with unbounded-delay channels. Using this view, synchronous models are 
stronger than asynchronous models. Remember that strong and weak are not absolute, but 
relative attributes, and there is no measure to quantify them. It is also true that sometimes 
two models cannot be objectively compared, so one cannot be branded as stronger than 
the other.

Which model would you adopt for designing a distributed application? There is no unique 
answer to this question. On one side, the choice of a strong model simplifies algorithm 
design, since many constraints relevant to the application are built into the model. This 
simplifies correctness proofs too. On the other side, when an application is implemented, 
a crucial issue is the support provided by the underlying hardware and the operating sys-
tem. Occasionally, you may want to port an available solution from an alternate model to 
a target platform—for example, an elegant leader election algorithm running on the link 
register model is described in a textbook, and you may want to implement it on a message-
passing architecture with bounded process delays and bounded channel capacities, because 
that is what the hardware architecture of the target platform supports. This may add to the 
complexity.

Such implementations are exercises in simulation and are of interest not only to prac-
titioners but also to theoreticians. Can model A be simulated using model B? What are 
the time and space complexities of such simulations? Questions like these are intellectu-
ally challenging and stimulating, and building such layers of abstraction has been one of 
the major activities of computer scientists. In general, it is simpler to implement a weaker 
model from a stronger one, but the implementation of a stronger model using a weaker one 
may take considerable effort. In the remainder of this section, we outline a few such 
implementations.

3.5.2 Implementing a FIFO Channel Using a Non-FIFO Channel

Let c be a non-FIFO channel from process P to process Q. Assume that the message delay 
along c is arbitrary but finite. Consider a sequence of messages m[0], m[1], m[2], …, m[k] 
sent by process P. Here, i denotes the sequence number of the message m[i]. Since the chan-
nel is not FIFO, it is possible for m[j] to reach Q after m[i] even if i > j. To simulate FIFO 
behavior, process Q operates in two phases: store and deliver. The roles of these phases are 
explained as follows:

Store: Whenever Q receives a message m[j], it stores it in its local buffer.

Deliver: Process Q delivers the message to the application, only after message m[j − 1] has 
already been delivered.

* The claim becomes debatable for those systems where physical system supports broadcasts.
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The implementation, referred to as a resequencing protocol, is described in the following. 
It assumes that every message has a sequence number that grows monotonically.

{Sender process P}               {Receiver process Q}
var i : integer {initially 0}     var k : integer {initially 0}
                                     buffer : buffer [0..∞] of
                                      message
repeat                                {initially for all k:
                                      buffer[k] = null}
        send m[i],i to Q;        repeat {store}
        i := i+1;                    receive m[i],i from P;
forever                              store m[i] into buffer[i];
                                     {deliver}
                                     while buffer[k] ≠ null do
                                     begin
                                       deliver the content of 
                                        buffer k];
                                         buffer [k] := null; k := k+1;
                                     end
                                 forever

The solution is somewhat simplistic for two reasons: (1) the sequence numbers can become 
arbitrarily large, making it impossible to fit in a packet of bounded size, and (2) the size of 
the buffer required at the receiving end has to be arbitrarily large.

Now, change the model. Assume that there exists a known upper bound of T seconds 
on the message propagation delay along channel c, and messages are sent out at a uniform 
rate of r messages per second by process P. It is easy to observe that the receiving process Q 
will not need a buffer of size larger than r · T, and it is feasible to use a sequence number of 
bounded size from the range [0.. r · T). Synchrony helps! Of course, this requires process Q 
to receive the messages at a rate faster than r.

How can we implement the resequencing protocol with bounded sequence numbers on 
a system with unbounded message propagation delay? A simple solution is to use acks. Let 
the receiving process have a buffer of size w to store all messages that have been received, 
but not yet been delivered. The sender will send messages m[0], m[1], …, m[w − 1] and wait 
for an ack from the receiver. The receiver will empty the buffer and deliver them to the 
application and send an ack to the sender. Thereafter, the sender can recycle the sequence 
numbers 0..(w − 1).

The price paid for saving the buffer space is a reduction in the message throughput 
rate. The exact throughput will depend on the value of w, as well as the time elapsed 
between the sending of m[w − 1] and the receipt of the ack. The larger is the value 
of w, the bigger is the buffer size, the fewer is the number of acks, and the better is the 
throughput.
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3.5.3 Implementing Message Passing Using Shared Memory

A relatively easy task is to implement message passing on a shared-memory 
 multiprocessor. Such a simulation must satisfy the channel axioms. The implementa-
tion of a channel of capacity (max − 1) between a pair of processes uses a circular mes-
sage buffer of size max (Figure 3.3).

Let s[i] denote the ith message sent by the sender and r[j] denote the jth message 
received by the receiver. The implementation is described in the following. Observe that 
the sender is blocked when the channel is full and the receiver is blocked when the chan-
nel is empty.

shared var p, q: integer {initially p = q}
buffer: array [0..max-1] of message
{Sender process P}
var s: array of messages sent by P, i : integer {initially 0}
repeat
     if p ≠ q − 1 mod max then
     begin
             buffer[p] := s[i]; i := i + 1; p := p + 1 mod max
     end
forever

{Receiver process Q}
var r: array of messages received by Q, j : integer {initially 0}
repeat
     if q ≠ p mod max then
     begin
             r[j] := buffer[q]; j := j + 1; q := q + 1 mod max
     end
forever

3.5.4 Implementing Shared Memory Using Message Passing

We now look into the implementation of a globally shared variable X in a system of n pro-
cesses 0, 1, 2, …, n − 1 using message passing. For this, each process i maintains a local 
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FIGURE 3.3 Implementation of a channel of capacity max from P to Q.
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copy x[i] of X (Figure 3.4). The important requirement here is that whenever a process 
wants to read X, its local copy must equal the latest updated value of X. A first step towards 
implementing the read and write operations on X is described as follows:

{Implementing shared memory by message passing: first attempt}
{read X by process i}
read x[i] x[i] := v

{write X := v by process i}
x[i] := v
Multicast v to every other process j (j ≠ i) in the system;
Process j (j ≠ i), after receiving the multicast, sets x[j] to v.

The apparent goal is to make each local copy of the shared variable identical to one another 
after each update operation. However, there are problems. Assume that two  processes 0 
and 1 are trying to update the shared variable X simultaneously with different values. It is 
possible for these updates to reach processes 2 and 3 in different order, making x[2] ≠ x[3]. 
It may appear that the problem can be resolved by making the multicast operation write 
X an indivisible operation (also known as an atomic operation), but actually, it does not 
resolve the problem, since it does not regulate the order of arrival of the updates at their 
destination processes. Thus, the solution described here is simplistic, flawed, and incom-
plete. Furthermore, implementing an atomic operation is far from trivial and has its own 
overhead.* What is needed is a guarantee that all processes will always receive the updates 
in identical order. This is known as total order multicast. Its implementation depends on 
how multicasts are performed and whether messages can be lost and whether processes 
are prone to failures. We will address the feasibility of this in Chapter 16.

* Implementation of atomic broadcasts will be addressed in Chapter 16.
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FIGURE 3.4 (a) A shared-memory location X; (b) its equivalent representation in message-passing 
model.
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3.5.5 Impossibility Result with Channels

Let us revisit the message-passing model and examine the problem of detecting whether 
a channel is empty. A familiar scenario is as follows: there are two processes i and j and 
two channels (i, j) and (j, i). During a cold start, these channels may contain an arbitrary 
sequence of messages. To properly initialize the channel, process j, before starting the exe-
cution of a program, wants to make sure that the channel (i, j) is empty, so that whatever 
message it receives was actually sent by process i. How can process j detect this condition?

If the clocks are synchronized and there exists an upper bound T on the message 
propagation delay along channel (i, j), then the problem is simple—both processes i and 
j pause for at least T seconds—this flushes both channels and each process rejects all the 
messages arriving during this time. After T seconds, process j knows that channel (i, j) 
is empty.

What if there is no known upper bound on the channel propagation delay? It is impos-
sible for process j to wait for a bounded time and declare that channel (i, j) is empty. An 
alternative attempt is for process j to send a message to process i, requesting it to echo back 
the special message * along channel (i, j). If the channel is FIFO and process j receives the 
special message * before receiving any other message, then j might be tempted to conclude 
that the channel must have been empty. However, there is a fly in the ointment—it assumes 
that initially the channel (i, j) did not contain the special message *. This contradicts the 
assumption that initially the channel can contain arbitrary messages.

Although this is not a formal impossibility proof, it turns out that without an upper 
bound on the message propagation delay, it is not possible to detect whether a channel is 
empty even if it is known to be FIFO.

3.6 CLASSIFICATION BASED ON SPECIAL PROPERTIES
Distributed systems are also sometimes classified based on special properties or special 
features. Here are a few classifications.

3.6.1 Reactive versus Transformational Systems

A distributed system is called reactive when one or more processes constantly react to 
 environmental changes or user requests. An example of a reactive system is a server. 
Ordinarily, the servers never sleep—whenever client processes send out requests for ser-
vice, the servers provide the desired service. Another example of a reactive system is a 
token ring network. A process requesting service waits to grab the token and, after com-
pleting the send or receive operation, releases the token that is eventually passed on to 
another waiting process. This goes on forever.

The goal of nonreactive systems is to transform the initial state into a final state 
via actions of the component processes and reach a terminal point. An example is the 
 computation of the routing table in a network of processes. When the computation ter-
minates, or reaches a fixed point, every process has its routing table correctly configured. 
Unless there is a failure or a change in topology, there is no need to recompute the rout-
ing tables. Nonreactive systems are also known as transformational systems.
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3.6.2 Named versus Anonymous Systems

A distributed system is called anonymous when the algorithms do not take into consider-
ation the names or the identifiers of the processes. Otherwise, it is a named system. Most 
real systems are named systems. However, anonymity is an esthetically pleasing property 
that allows a computation to run unhindered even when the processes change their names 
or a newly created process takes up the task of an old process. From the space complexity 
point of view, each process needs at least log2n bits to store its name where n is the number 
of processes. This becomes unnecessary in anonymous systems.

Anonymous systems pose a different kind of challenge to algorithm designers. Without 
identifiers or names, processes become indistinguishable. This symmetry creates prob-
lems for those applications in which the outcome is required to be asymmetric. As an 
example, consider the task of electing a leader in a network of n (n > 1) processes. Since 
by definition there can be only one leader, the outcome is clearly asymmetric. However, 
since every process will start from the same initial state and will execute identical instruc-
tions at every step, there is no obvious guarantee that the outcome will be asymmetric, at 
least using deterministic means. In such cases, probabilistic techniques become useful for 
breaking symmetry.

3.7 COMPLEXITY MEASURES
The cost or complexity of a distributed algorithm depends on the algorithm, as well as on 
the model. Two well-known measures of complexity are the space complexity (per process) 
and the time complexity.

The space complexity of an algorithm is the amount of memory space required to solve 
an instance of the algorithm as a function of the size of the system. One may wonder if we 
should care about space complexity, when the cost of memory has come down drastically. 
In the context of present-day technology, the absolute measure may not be very signifi-
cant for most applications, but the scale of growth as a function of the number of nodes in 
the network (or the diameter of the network) may be a significant issue. A constant space 
complexity, as represented by O(1) using the big-O notation, is clearly the best, since the 
space requirement for each process is immune to network growth. Also, many applications 
require processes to send the value of their current state to remote processes. The benefit of 
constant space is that message sizes remain unchanged regardless of the size or the topol-
ogy of the network.

For time complexity, numerous measures are available. Some of these measures evolved 
from the fuzzy notion of time across the entire system, as well as the nondeterministic 
nature of distributed computations. An accepted metric is the total number of steps needed 
by all the processes in the worst case from start to end, each step accounting for a basic 
action. The execution of an algorithm may halt from time to time due to interruptions 
generated by the operating systems, but the time complexity measure is immune to these 
unpredictable interruptions.

With today’s technology, processor clocks tick at rates greater than 1 GHz, but mes-
sage propagation delays still range from a few microseconds to a few milliseconds. 
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Communication cost is the major overhead of the time needed to execute a distributed 
algorithm. Accordingly, a more relevant metric is the message complexity, which is the 
number of messages exchanged during an instance of the algorithm as a function of the 
size of the system. Message complexity fills the void left in the traditional measure of time 
complexity.

An argument against the use of the number of messages as a fair measure of message 
complexity is as follows. Messages do not have constant sizes—the size of a message may 
range from 64 or 128 bits to several million bits. If message sizes are taken into account, 
then sometimes the cost of sending a large number of short messages can be lower than the 
cost of sending a much smaller number of large messages. This suggests that the total num-
ber of bits exchanged (i.e., the bit complexity) during the execution of an algorithm should 
be a more appropriate measure of the communication cost. Another form of classification 
in message complexity is based on the LOCAL and the CONGEST models [Peleg00]. The 
LOCAL model is simplistic—it disregards the size of the messages (and the variability in 
the time needed to process them) and assumes that all enabled processes execute their 
actions simultaneously. The CONGEST model takes into account the volume of commu-
nication and enforces a limit of O(log n) on the basic message size, where n is the size of 
the system. The CONGEST model however allows process actions to be synchronous or 
asynchronous.

In a purely asynchronous message-passing model with arbitrary message propagation 
delays, absolute time plays no role. However, in models with bounded channel delays and 
approximately synchronized clocks, a useful alternative metric is the total time required 
to execute an instance of the algorithm. One can separately estimate the average and the 
worst-case complexities.

The shared-memory models handle shared communication costs in a simplistic way. 
The program of each process is a sequence of discrete steps that include the communica-
tion overhead via reading of the state variables of a neighboring process (thus, it requires 
one step to read the state of a neighboring process). The size or grain of these discrete steps 
is called the atomicity of the computation, and the entire computation is an interleaving of 
the sequence of atomic steps. The time complexity of an algorithm is the total number of 
steps taken by all the processes during its execution as a function of the size of the system. 
As with space complexity, here also, the key issue is the growth of time complexity with the 
growth in network size or the network diameter.

Example 3.1: Multicasting in a Hypercube

Consider a k-cube with n = 2k processes. Each vertex represents a process and each 
edge represents a bidirectional FIFO channel. Process 0 is the initiator of a multicast—
it periodically multicasts a value that updates a local variable x in each process in 
the n-cube. Let x[i] denote the value of x in process i. The initial values of x[i] can be 
arbitrary. The case of k = 3 is illustrated in Figure 3.5.



Models for Communication   ◾   61  

Let N(i) denote the set of neighbors of process i. Process 0 starts the multicast by 
sending the value to each node in N(0). Thereafter, every process i executes the fol-
lowing program:

{Program for process i > 0}
receive message m {m contains the value};
if m is received for the first time
       then  x[i] := m.value;
             send x[j] to each node in {j ∈ N(i): j > i}
       else  discard m
end if

The multicast terminates when every process j has received a message from each 
neighbor i < j and sent a message to every neighbor k > j (whenever there exists one).

Since messages traverse every edge exactly once, the message complexity of 
the proposed algorithm is |E|, where E is the set of edges. It is easy to observe that 
|E| = (1/2)n ⋅ log2n.

Example 3.2

We now solve the same problem on the state-reading model, where each process can 
read the states of all of its neighbors. As before, processes start from an arbitrary initial 
state. Process 0 first executes x[0] := v (where v is the value to be multicast), and thereaf-
ter, process 0 remains idle. Every other process executes the following program:

{Program for process i>0}
while ∃j ∈ N(i): (j < i) ∧ (x(i) ≠ x(j)) do x(i) := x(j) end while

When the multicast is complete, ∀i, j: x(i) = x(j).
In the state-reading model, the sender is passive—it is the receiver’s responsibil-

ity to pull the appropriate value from the sender (as opposed to pushing the value in 
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FIGURE 3.5 Multicasting in a 3-cube: process 0 is the initiator.
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the message-passing model). Accordingly, when a process pulls a different value of 
x from a lower-numbered process, it has no way of knowing if it is the value chosen 
by the source or it is the unknown initial value of that node. The time complexity, 
as measured by the maximum number of assignment statements executed by all the 
processes, can be arbitrarily large. To understand why, assume that in Figure 3.5, the 
initial states of the nodes 3, 5, 6, and 7 are different from one another. Here, node 7 
may continue to copy the states of these three neighbors one after another for an 
indefinitely long period. However, eventually, nodes 3, 5, 6 will set their states to that 
of node 0, and after this, node 7 will require one more step to set x[7] to the value 
multicast from node 0. This is why the upper bound of the time complexity is finite, 
but arbitrarily large.

If however the initial values of x[i] are not arbitrary (which is the case after the 
first multicast is over), then the message complexity will be the same as that in the 
message-passing model. Even when the initial values of x are arbitrary, we can devise 
an alternative solution with bounded time complexity as follows: Allocate an addi-
tional buffer space of size log n per process, and ask every process to read and memo-
rize the states of all of its neighbors that have a lower id before modifying its own 
state. A process will update its state only when the states of all of its lower-numbered 
neighbors are identical and it is different from its own state. The modified rule for 
process i will be as follows:

while ∀j, k ∈ N(i): j < i ∧ k < i, x(j) = x(k) ∧ x[i] ≠ x[j]
 do x(i) := x(j) end while

The multicast terminates when the predicate is false for all processes. In a k-cube, 
the maximum number of steps required by all the processes to complete the multi-
cast can be calculated as follows. We focus on the maximum number of steps needed 
by the process that is farthest from the source to acquire the value from the source, 
since it is easy to argue that by that time, the multicast will reach all other processes. 
After one step, the process that is farthest from process 0 (i.e., at distance k) cop-
ies the state of its distance-1 neighbors; after an additional ( )kC1 1+  steps, it copies 
the state of  its distance-2 neighbors; after an additional ( )k kC C2 1 1+ +  steps, it cop-
ies the state of its distance-3 neighbors; and so on. The total number of steps to com-
plete the multicast is the sum of all these. Since the number of steps required to copy 
a value from the farthest process is k k k kC C C Ck k+ + + + +( )−1 2 1 1�  ≤ 2k, and the time 
to copy the value from any interim distance is bounded by this upper limit, the maxi-
mum number of steps needed to complete the multicast is ≤k ⋅ 2k, that is, O(n logn).

Round complexity: Another measure of time complexity in asynchronous  systems is 
based on rounds. Historically, a round involves synchronous processes that execute 
their actions in lockstep synchrony, and round complexity is the number of steps 
taken by each process as a function of the size of the input. In asynchronous systems, a 
round is an execution sequence in which the  slowest enabled process executes one step. 



Models for Communication   ◾   63  

Naturally, during this period, the faster processes may have taken one or more steps. Thus, 
the following execution in a system of four processes 0, 1, 2, 3 constitutes two rounds:

1 2 0 2 1 3 2 1 0 1 3

The notion of rounds gives us a measure of the number of steps that will be neces-
sary, if processes execute their actions in lockstep synchrony. The algorithm in the 
modified version of Example 2 will take log2n rounds to complete, log2n being the 
diameter of the network.

The examples illustrated here use deterministic actions only. There is a rich set of 
algorithms in distributed computing that uses probabilistic or randomized actions, 
where the next state of a process or the choice of a neighbor is decided using a coin 
flip. Since the time complexity can vary from one run to another, the time complexity 
in such cases is determined either by the expected number of steps or by the number 
of required steps with high probability (abbreviated as w.h.p.), which is synonymous 
with the probability ≥ −( )( )1 1 nc , where c > 1. We will study a couple of probabilistic 
algorithms in Chapter 10.

3.8 CONCLUDING REMARKS
A model is an abstraction of a real system. When the real system is complex, reasoning about 
correctness becomes complicated. In such cases, various mechanisms of abstraction are used to 
hide certain details irrelevant to the main issues. Weaker models have fewer constraints. Systems 
functioning correctly on weaker models usually function correctly on stronger models without 
additional work, but the converse is not true. This chapter presents a partial view—it only focuses 
on some of the broader features of the various models, but ignores more difficult and subtle issues 
related to scheduling of actions or grains of computation. These will be addressed in Chapter 5 
where we discuss program correctness. The implementation of one kind of model using another 
kind of model is intellectually challenging, particularly when we explore the limits of space and 
time complexities. Results related to impossibilities, upper and lower bounds of space, time, or 
message requirements, form the foundations of the theory of distributed computing.

3.9 BIBLIOGRAPHIC NOTES
Brinch Hansen’s RC4000 operating system [BH73] is one of the first practical systems based 
on the message-passing model. The original nucleus supported four primitives to enable 
client–server communication using a shared pool of buffers. Cynthia Dwork first presented 
the taxonomy of synchronous behavior. In a classic paper (CSPs), Hoare introduced syn-
chronous message passing [H78] as a form of communication via handshaking. David May 
of INMOS implemented it in Occam [M83]. Other well-known examples of this model are 
Ada Rendezvous and RPC. David Gelernter [G85] developed Linda. Since then, the Linda 
primitives have been added to several languages like C or FORTRAN. Two prominent and 
contemporary uses of message passing are MPI (introduced in the MPI forum in 1994—
see the article by Marc Snir et al. [DOSW96]) and parallel virtual machine (PVM) by Geist 
et al. [GBDW+94]. Various middlewares introduced in Chapter 2 highlight the importance 
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of the message-passing model. Two well-known tools for mobile agent implementations 
are Dartmouth’s D’Agent [GKC+98] and IBM’s Aglets [LO98], and various abstraction of 
mobile agents can be found in [AAKK+00] and [G00].

Shared variables have received attention from the early days of multiprocessors and have 
been extensively studied in the context of various synchronization primitives. In the mod-
ern context, the importance of shared variables lies in the fact that many programming 
languages favor the shared variable abstraction regardless of how they are implemented. 
DSM creates the illusion of shared memory on an arbitrary multicomputer substrate. In 
client–server computing, clients and servers communicate with one another using mes-
sages, but interclient communication uses shared objects maintained by the server.

For discussions on algorithmic complexities, read the classic book by Cormen et al. 
[CLR+01]. The LOCAL and the CONGEST models were introduced by Peleg [Peleg00].

EXERCISES

3.1  Distinguish between the link register model and the message-passing model in which 
each channel has unit capacity. Implement the link register model using the message-
passing model.

3.2  A keyboard process K sends an arbitrarily large stream of key codes to a process P, 
which is supposed to store them in its local memory. In addition to receiving the inputs 
from K, P also executes an infinite computation. The channel (K, P) has a finite capacity. 
Explain how K and P will communicate with each other in the following two cases:

 a. K uses blocking send, and P uses nonblocking receive.
 b. K uses blocking send, and P uses blocking receive.

Comment on the progress of the computation in each case.
3.3  The CSP language proposed by Hoare [H78] uses a form of synchronous message pass-

ing: a process sending a message is delayed or blocked until the receiver is ready to 
receive the message, and vice versa. The symbols ! and ? are used to designate output 
and input actions, respectively. To send a value e to a process Q, the sending process 
P executes the statement Q!e, and to receive this value from P and assign it to a local 
variable x, process Q executes the action P?x. Write a program with three processes P, 
Q, and move, so that process move receives the values of an array x of known size from 
P one after another and sends them to Q, which assigns these values to a local array y.

3.4  n client processes 0..(n − 1) share a resource managed by a resource server. The 
resources are to be used in a mutually exclusive manner. The clients send requests for 
using these resources, and the server guarantees to allocate the resource to the clients 
in a fair manner (you are free to invent your own notion of fairness here and try dif-
ferent definitions), and the clients guarantee to return the resources in a finite time.

  Write down a program to illustrate the client–server communication using (a) 
 message passing and (b) shared memory.

3.5  A wireless sensor network is being used to monitor the maximum temperature in a 
region. Each node monitors the temperature of a specific point in the region. Propose 
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an algorithm for computing the maximum temperature and broadcasting the maxi-
mum value to every sensor node. Assume that communication is by broadcasting 
only, and the broadcasts are interleaved (i.e., they do not overlap), so two sensor nodes 
never send or receive data at the same time.

3.6  Consider an anonymous distributed system consisting of n processes. The topology 
is a completely connected network, and the links are bidirectional. Propose an algo-
rithm using processes that can acquire unique identifiers. 
(Hint: Use coin flipping, and organize the computation in rounds.) Justify why your 
algorithm will work.

3.7  In a network of mobile nodes, each node supports wireless broadcast only. These 
broadcasts have a limited range, so every node may not receive all the messages, and 
thus the network may not be connected. How will any given node P find out if it can 
directly or indirectly communicate with another node Q? What kind of computation 
models are you using for your solution?

3.8  Alice and Bob enter into an agreement: whenever one falls sick, she or he will call the 
other person. Since making the agreement, no one called the other person, so both 
concluded that they are in good health. Assume that the clocks are synchronized, 
communication links are perfect, and a telephone call requires zero time to reach. 
What kind of interprocess communication model is this?

3.9  Alice decides to communicate her secret to Bob as follows: the secret is an integer or can 
be reduced to an integer. The clocks are synchronized, and the message propagation is 
negligibly small. Alice first sends a 0 at time t, and then sends a 1 at time t + K, K being the 
secret. Bob deciphers the secret by recording the time interval between the two signals.

What kind of interprocess communication model is this? Will this communi-
cation be possible on a partially synchronous model where the clocks are approxi-
mately synchronized and the upper bound of the difference between the two clocks 
is known? Explain your answer.

3.10  Using the mobile agent model, design an algorithm to detect biconnectivity between 
a pair of processes i and j in a network of processes. Assume that both i and j can send 
out mobile agents.

3.11  A combinational digital circuit is to be simulated using an acyclic network of pro-
cesses. Each process in the simulated model will represent a gate. Model the hard-
ware communication using (1) CSP (explained in Exercise 3.3) and (2) link register. 
Provide an example in each case.

3.12  Figure 3.6 illustrates a pipeline with n processes 1 through n. Streams of tasks are sent to 
the pipeline through the entry point. Each process completes 1/n fraction of a total task 
and passes it on to the next process. The finished task exits the pipeline at the exit point.

  Process i accepts an item for processing, when (1) it has completed its own part, (2) it 
sends an ack to its predecessor (i − 1), and (3) the predecessor (i − 1) delivers the item to 
it. Initially, processes 2 through n have sent acks to their predecessors. Write a program 
for process i (1 < i < n) using the state-reading model of interprocess communication.
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3.13 Assuming that message propagation delays have known upper bounds, show an 
implementation of the state-reading model using a message-passing model.

3.14 Consider the problem of phase synchronization, where a set of processes executes 
their actions in phases and no process executes phase (k + 1) until every process 
has completed its phase k(k ≥ 0). This is useful in parallelizing loop computations. 
Implement phase synchronization using the shared-memory model.

3.15 In synchronous communication (also known as synchronous message passing), a 
message m is sent by a process P only when the receiving process Q is ready to receive 
it and vice versa. Assuming that P and Q are connected with each other by a pair of 
unidirectional unit capacity links, outline the implementation of synchronous mes-
sage passing using asynchronous message passing.

3.16 A process P sends messages to another process Q infinitely often via a unidirectional 
channel. The communication channel c is not FIFO. Assume now that there exists a 
known upper bound of T seconds on the message propagation delay along channel c, 
messages are sent out at a uniform rate of r messages per second by process P, and pro-
cess Q is faster than process P. What is the smallest size buffer that process Q is required 
to maintain, if it wants to accept the messages in the same order in which P sent them?

3.17 Processes in a named system rely on process identifiers for taking certain actions. 
Can you design a distributed algorithm (of your choice) that has a space complexity 
O(1) on a named system? Explain your answer.

3.18 Consider a population of size n in a town and the task of multicasting a message m to 
every resident of that town. Residents communicate using Twitter, and communica-
tion is round based: in each round, a person can tweet a message to exactly one other 
person. The goal is to complete the multicast as quickly as possible.
Part 1. Assume that each sender has full knowledge of who has not currently received 

the message. Propose an algorithm using the multicast that is completed in the 
fewest number of rounds (only the main idea using pseudocodes is needed here). 
Calculate the time complexity in rounds.

*Part 2. Now assume that senders have no knowledge of who has already received the 
message (senders are lazy and no one maintains the list of the residents to whom 
she or he has already tweeted the message in the previous rounds). So each sender 
randomly picks a resident and tweets him or her. Calculate the expected number 
of rounds needed for the message to reach every resident.

123

1 2 3 n

Entry Exit

Tasks

ack ack ack ack ack ack

FIGURE 3.6 Pipeline of n processes 1 through n.
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C h a p t e r  4

Representing Distributed 
Algorithms
Syntax and Semantics

4.1 INTRODUCTION
This chapter introduces a minimal set of notations to represent distributed algorithms. 
These notations do not always conform to the syntax of popular programming languages 
like C or Java. They are only useful to appropriately specify certain key issues of atomicity, 
nondeterminism, and scheduling in a succinct way. The notations have enough flexibility 
to accommodate occasional use of even word specifications for representing actions. These 
specifications are only meant for a human user who is trying to implement the system or 
reason about its correctness. In [D76], Dijkstra argued about the importance of such a 
language to influence our thinking habits. This is the motivation behind introducing these 
simple notations for representing distributed algorithms.

4.2 GUARDED ACTIONS
A sequential process consists of a sequence of actions. Here, each action or statement cor-
responds to either an internal action or a communication action. The following notation 
represents a sequential process consisting of (n + 1) actions S0 through Sn:

 S S S Sn0 1 2; ; ; ; ;…

We structure programs as follows. To name a particular program, we will use program 
<name> in the opening line. The variables and constants of a program will be introduced in 
the define section, and any initial values will be separately declared in the initially section. 
This will be followed by the program statements. We will designate a message as a variable 
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of type message. If the structure of the message is important, then we will optionally define 
it as a record. Thus, a message m with three components a, b, c will be denoted as follows:

type message = record
 a: integer
 b: integer
 c: boolean
 end
define m: message

The individual components of m will be designated by m.a, m.b, and m.c. For representing 
other forms of structured data, we will freely use Pascal-like notations.

A simple assignment is of the form x := E, where x is a local variable and E is an expression. 
A compound assignment assigns values to more than one variable in one indivisible action. 
Thus, x, y := m.a, 2 is a single action that assigns the value of m.a to the variable x and the value 2 
to the variable y. The compound assignment x, y := y, x swaps the values of the variables x and y.

On many occasions, an action S takes place only when some condition G holds. Such 
a condition is often called a guard. We will represent a guarded action by G → S. Thus, 
x = y → x := y + 1 is a guarded action. A guarded action will also be called a statement.

A trivial extension is the alternative construct that contains more than one guarded 
action. Consider the following construct:

If G0 → S0
[] G1 → S1
[] G2 → S2
.
.
[] Gn → Sn
fi

It will mean that the action Si takes place only when guard Gi is true. When no guard is 
true, this reduces to the statement skip (do nothing). In case more than one guard is true, 
the choice of the action that will be executed is completely arbitrary, unless specified other-
wise by the scheduler. The previous notations are adequate to represent possible nondeter-
ministic behaviors of programs.

Since we will deal only with abstract algorithms and not executable codes, program 
declarations or statements may occasionally be relaxed, particularly when their meanings 
are either obvious or self-explanatory. As an illustration, let process i send a message to 
process j—process j, upon receiving a message from process i, will initiate some action. The 
complete syntax for the action by process j will be

if ¬empty(i,j) → receive message m;
 if m = hello → …
 [] m = hi → …
 fi
 … … …
fi
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However, if (i, j) is the only channel incident on process j, or the identification of the 
channel through which the message is received is not relevant to our discussion, then with 
little loss of clarity, we can represent the same program as

if message = hello → …
[] message = hi →
 … … …
fi

It is assumed that the message is consumed from the message buffer when it is received and 
examined. Finally, we describe the repetitive construct. The notation

do G0 → S0
[] G1 → S1
[] G2 → S2
.
.
[] Gn → Sn
od

will represent a loop that is executed as long as at least one of the guards G0…Gn is true. 
When two or more guards are true, any one of the corresponding actions can be chosen 
for execution, and the choice is arbitrary. The execution of the loop terminates when all the 
guards are false. As an example, consider the following program:

program uncertain;
define x : integer;
initially x = 0
do x < 4 → x := x + 1
[] x = 3 → x := 0
od

For the first three steps in the execution of this program, only the first guard is true, so 
the action x := x + 1 is executed, and the value of x becomes 3. But what happens after 
the third step? Note that both the guards are true now, so we will allow only one of the 
corresponding actions to take place, the choice being completely arbitrary. If the second 
action is chosen, then the value of x again becomes 0 and the first statement has to be 
executed during the next three steps. If however the first action is chosen, then the value 
of x becomes 4, and the loop terminates since all the guards are false. The corresponding 
state diagram is shown in Figure 4.1.

Can we predict if the second action will at all be chosen when x = 3? No. This is because the 
choice of an action is completely determined by the fairness of the scheduler. A fair scheduler 
will eventually select the first action when x = 3, and so the program will terminate. However, 
an unfair scheduler may not do so, and, therefore, termination is not guaranteed. We will 
address fairness issues in Section 4.5. Readers are encouraged to explore how these execution 
semantics can be specified using a well-known programming language of their choice.
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A major issue in a distributed computation is global termination, which corresponds to 
reaching a state in which (1) the execution of the program for each process has terminated, 
that is, all guards are false, and (2) there is no message in transit along any of the channels. 
This is useful when a computation is structured into a sequence of phases, each process 
needs to detect whether the computation of the current phase has terminated before begin-
ning the next phase. We will address termination detection in Chapter 9.

4.3 NONDETERMINISM
Guarded actions representing alternative and repetitive constructs involve nondetermin-
ism: whenever two or more guards are simultaneously enabled, the choice of which action 
will be scheduled is at the discretion of the scheduler. Define the global state A of a dis-
tributed system as the set of all local states and channel states, and define the behavior of 
a computation as a sequence of global states A0 → A1 → A2 → … → Ak → Ak+1 →…, where 
A0 is the initial state. Each state transition is due to an action by some process in the sys-
tem. In a deterministic computation, the behavior remains the same during every run of 
the program. However, in a nondeterministic computation, starting from the same initial 
state, the behavior of a program may be different during different runs, since the scheduler 
has discretionary choice about alternative actions.

This apparently complicates matters, and nondeterminism may appear to be an unnec-
essary digression. However, in distributed systems, nondeterminism is quite natural. 
Operating system needs to guarantee that even if device interrupts are received at unpredict-
able moments, every execution of a well-behaved program consistently produces the same 
output. Similarly, network delays are arbitrary, so in different runs of a distributed algorithm, 
a process may receive the same set of messages in different order. This makes the case of non-
deterministic behavior a rule in distributed systems and determinism a special case.

Deterministic scheduling of actions is sometimes inadequate to generate all the possible 
outcomes of a nondeterministic distributed computation. Consider a server process with 
k input channels c0, c1, c2, c3, …, ck−1: when a client sends a message through one of these 
channels, the server sends an acknowledgement to the sender:

define x : array [0..k − 1]of boolean
initially for all channels are empty
do ¬empty(c0) → send acknowledgement along c0
[] ¬empty(c1) → send acknowledgement along c1
 … … …
[] ¬empty(ck−1) → send acknowledgement along ck−1
od

x = 1x = 0 x = 2 x = 3 x = 4

FIGURE 4.1 The state transitions in program uncertain.
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A deterministic scheduler will poll the channels in a fixed order. Thus, if three messages 
arrive via c0, c1, and c2 at the same time, then the server will only send acknowledgments in 
the order c0c1c2 and never acknowledge these in the order c0c2c1, although this is feasible if 
the channels are polled in a nondeterministic order. The semantics of deterministic choices 
using if… then… else… produce a subset of the set of behaviors that are possible using 
nondeterministic choice. A system that is proven correct with nondeterministic choice is 
guaranteed to behave correctly under a deterministic scheduler.

4.4 ATOMIC OPERATIONS
Consider a process P with two input channels: red and blue. Suppose that two infinite 
streams of messages arrive through these two channels. Also, let x be a local variable of 
process P. What happens to x when the following program is executed?

do ¬empty(red) → x := 0 {red action}
[] ¬empty(blue) → x := 15 {blue action}
od

Regardless of how nondeterminism is handled, we would expect the value of x to be an 
arbitrary sequence of 0’s and 15’s. However, there are some subtle issues that require closer 
examination.

If each assignment is an indivisible action, then the previous conclusion is definitely true. 
However, this has not been specified in the program! To realize how such a specification can 
make a difference, assume that x is a four-bit integer x3x2x1x0 and assume that each assign-
ment is executed in four steps—each step updating only one bit of x. Thus, x := 0 is trans-
lated to x3 := 0; x2 := 0; x1 := 0; x0 = 0 and x := 15 is translated to x3 := 1; x2 := 1; x1 := 1; x0 = 1. 
With both guards constantly enabled, the scheduler may choose to interleave the actions in 
the following sequence:

 x3 0: ;=  {red action}

 x3 1: ;=  {blue action}

 x2 1: ;=  {blue action}

 x2 0: ;=  {red action}

 x1 0: ;=  {red action}

 x1 1: ;=  {blue action}

 x0 1: ;=  {blue action}

 x0 0: ;=  {red action}

With this scenario, x3 = 1, x2 = 0, x1 = 1, x0 = 0 (i.e., x = 10 in decimal) will be the value 
of x. In fact, depending on the pattern of interleaving, x can assume any value between 
0 and 15!
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The previous example shows that the result of a computation can be influenced by what 
operations are considered indivisible. Such an indivisible action is called an atomic action 
or atomic operation. A distributed computation is an interleaved sequence of operations, 
and atomicity (also called granularity) determines the types of permissible interleaving in 
a distributed computation. If the actions x := 0 and x := 15 were atomic, then at any time, x 
would have assumed one of these two values only.

As another illustration of the significance of atomic operations, consider a system of 
three processes P, Q, R. Let process P execute the program:

define b : boolean
initially b = true
do b → send message to process Q
[] ¬empty(R,P) → receive message from process R; b := false
od

If the send operation takes a long time, but a message from R arrives before the send opera-
tion is complete, should the arrival of the message interrupt the send operation? No, as 
long as the send operation is treated as an atomic operation. However, if P recognizes the 
arrival of the message from R before the send operation is scheduled and schedules the 
receive operation, then it will execute the statement b := false, and the send operation will 
not be scheduled at all.

The grain of an atomic operation is determined by what is considered indivisible. An 
example of fine-grain atomicity is read–write atomicity, where only read and write operations 
on single variable are considered indivisible. Consider a completely connected network of 
n (n > 2) processes 0..n − 1, and each process i executes a program do Gi → Si od. Assume 
that to evaluate the guard Gi, process i needs to read the states of all the remaining n − 1 
processes in the system. With coarse-grained atomicity, the evaluation of each Gi is atomic 
action. In the read–write atomicity model, however, between two consecutive read operations 
by one process, another process can change its state by executing an action. Consequently, 
program behaviors and outcome can change if read–write atomicity model is assumed.

Atomic actions have the all-or-nothing property. If a process performs an atomic multi-
cast, then either every receiver receives the message, or none of them receives it. The dura-
tion of an atomic action is no more relevant—and for the purpose of reasoning, we can 
reduce the duration to a point on the time axis.

How does a system implement the granularity or the atomicity of an action? Some levels 
of atomicity are guaranteed by the processor hardware—whereas others have to be imple-
mented by software. In a single processor that does not use instruction pipelining, the 
execution of every instruction is atomic—external interrupts are not recognized until the 
execution of the current instruction is complete. In a shared-memory bus-based multi-
processor, the bus controller implements atomic memory read and memory write opera-
tions by serializing concurrent accesses to the shared memory. It thus provides natural 
support to read–write atomicity. In many shared-memory multiprocessors, special atomic 
instruction like test-and-set (TS) or compare-and-swap locks the memory bus (or switch) 
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for two consecutive memory cycles, enabling the program to perform an indivisible 
read–modify–write (RMW) operation. Such operations are effective tools for implement-
ing various types of locks and can be used to efficiently implement critical sections (CSs), 
which are atomic units of arbitrarily large size.

In our computation model, unless otherwise stated, we will assume that every guarded 
action is an atomic operation. Thus, once a guard Gi in the guarded action Gi → Si is true 
and the scheduler initiates the execution of the action Si, its execution must be allowed 
to complete (regardless of how much time it takes) before the guards are reevaluated and 
another action is scheduled. Consider the following program:

program switch
define a, flag: boolean
initially a = true, flag = false
do a → flag := true;
   flag := false
[] flag ∧ a → a := false
od

Since the first action is atomic, every time the guards are evaluated, flag is found to be false 
and the second statement is never executed! So the program does not terminate. For a more 
complete understanding of such issues, we introduce the notion of fairness.

4.5 FAIRNESS
In a nondeterministic program, whenever multiple guards are true, there is more than 
one action to choose from. The choice of these alternatives is determined by the notion of 
fairness. Fairness is a property of the scheduler, and it can affect the behavior of a program.

To understand what fairness is, consider the set of all possible schedules (i.e., sequences of 
actions) in a given program. Any criterion that discards some of these schedules is a fairness 
criterion. With such a general definition of fairness, it is possible to define numerous types of 
fairness criteria. Of these, the following three types of fairness have received wide attention:

 1. Unconditional fairness

 2. Weak fairness

 3. Strong fairness

A scheduler that allows all possible schedules characterizes an unfair scheduler. Consider 
the following program:

program test
define x: integer {initial value undefined}
do true → x := 0
[] x = 0 → x := 1
[] x = 1 → x := 2
od
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If the scheduler is unfair, then it is not impossible for it to always schedule the first action even 
if the guard of the second action remains true. As a result, the value of x may never be 1 or 2.

Unconditionally fair scheduler. A scheduler is unconditionally fair when each statement is 
eventually* scheduled, regardless of the value of its guard.

This version of fairness deals with scheduling at the statement level. All unconditional 
statements will eventually be scheduled for execution. However, an action that is scheduled 
is executed only if its guard is true at that time; otherwise, it is ignored. An unconditionally 
fair scheduler is a primitive version of a fair scheduler that intends to give every action a fair 
chance to execute. Thus, in the program test, an unconditionally fair scheduler may sched-
ule the guarded action x = 1 → x := 2 at a time when x = 0, but clearly, the action will not be 
executed. However, the action x = 0 → x := 1 will definitely be executed when it is scheduled.

As an example, consider the scheduling of n processes in a multiprogrammed unipro-
cessor. Traditional scheduling policies reflect unconditional fairness, which guarantees 
that processor time is allocated to each of the n processes infinitely often. More refined 
version of schedulers pay attention to the guards while scheduling an action. This leads to 
the concepts of weakly fair and strongly fair schedulers.

Weakly fair scheduler. A scheduler is weakly fair when it eventually schedules every guarded 
action whose guard becomes true and remains true thereafter.

Consider the program test again. Initially, only the first action is guaranteed to execute. 
After this, the condition x = 0 holds, so the guards of the first two actions remain enabled. 
The weakly fair scheduler will eventually schedule each of these two actions. Once the 
second action is executed, the condition x = 1 holds, which asserts the guard of the third 
action while the first guard remains enabled. So the scheduler has to choose between the 
first and the third actions. If the scheduler chooses the first action, then the guard of the 
third action again becomes disabled. In a valid execution, the weakly fair scheduler may 
schedule the first two actions infinitely often, but may never schedule the third action, 
since its guard does not remain enabled.

Finally, consider the following program fair and examine if the program will terminate 
under a weakly fair scheduler:

program fair
define x,b : boolean
initially b = true
do b → x := true
[] b → x := false
[] x → b := false
[] x → x := ¬x
od

Termination of the program fair is assured only if the scheduler chooses the third and 
fourth actions. But will these actions be chosen at all? With a weakly fair scheduler, there is 

* Note that the term eventually corresponds to the inevitability of an action. It does not specify when or after how many 
steps the action will take place, but it guarantees that the delay is finite.
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no guarantee that this will happen, since the guard x never stabilizes to the value true from 
the first two actions. However, program fair will terminate if the scheduler is strongly fair.

Strongly fair scheduler. A scheduler is strongly fair if it eventually schedules every guarded 
action whose guard is true infinitely often.

Note the difference between the two types of schedulers. The guard x in program fair does 
not remain enabled, but is enabled infinitely often—so a strongly fair scheduler must even-
tually execute the third action b := false, which negates the first two guards. On the same 
ground, it also eventually executes the fourth action, after which the program terminates.

In all these examples, all guarded actions belong to the same process—however, this is 
not necessary. The same definitions of fairness will apply when the guarded actions belong 
to distinct processes in a network or the guards include variables from a pair of neighbor-
ing processes.

Note that for a given program with a predefined initial state, the set of possible schedule 
of actions (also called executions or behaviors) under a weakly fair scheduler is a subset 
of the set of possible schedule of actions under a strongly fair scheduler. On one side, this 
implies that from a given initial configuration A0, any state Ak that is reachable under a 
weakly fair scheduler is also reachable under a strongly fair scheduler. However, on the 
other side, the additional feasible executions under a strongly fair scheduler may some-
times affect program termination, when these executions have the potential to lead the 
system through a cycle of nonterminal configurations.

It is possible to come across many other types of schedulers in common applications. An 
example is a FIFO scheduler. A FIFO scheduler guarantees that between two consecutive exe-
cutions of one action, every other action with an enabled guard gets the opportunity to execute 
once. If there is a mechanism to order the instants at which the guards were enabled, then FIFO 
scheduling guarantees that the corresponding actions are executed in that order. In real-time 
systems, fairness can be specified using physical clocks—for example, “engine number 2 must 
start 12 seconds after the blast-off of the spacecraft” specifies a stringent fairness property.

4.6 CENTRAL VERSUS DISTRIBUTED SCHEDULERS
The examples illustrated in the previous section dealt with a single process, whose program 
consists of one or more guarded actions. We will now examine the various possibilities of 
scheduling actions in a network of processes.

Since each individual process has a local scheduler, one possibility is to leave the sched-
uling decisions to these individual schedulers, without attempting any kind of global coor-
dination. This is most natural and characterizes distributed schedulers.

Consider the system of two processes in Figure 4.2. This system uses the state-reading 
model. Each process i has a Boolean variable x[i] and their initial values are arbitrary. The 
goal is to lead the system to a configuration in which the condition x[0] = x[1] holds. To 
meet this goal, assume that process i executes the following program:

do
 x[i + 1 mod 2] ≠ x[i] → x[i] := ¬x[i]
od
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With the initial values of x as shown in Figure 4.2, both processes have enabled guards. 
Using the distributed scheduler model, each process can take independent scheduling 
decisions as shown in Figure 4.3. Here, it is not impossible for each process i to concur-
rently read the state of the other process, detect that the guard is true, and eventually 
complement x[i]. As a result, the computation may potentially run forever and the goal 
is never reached.

The other scheduling model is based on the interleaving of actions. It assumes the 
presence of an invisible demon* that coordinates actions on a global basis. In particular, 
this demon finds out all the guards that are enabled, arbitrarily picks any one of these 
guards, schedules the corresponding action, and waits for the completion of this action 
before reevaluating the guards. This is the model of a central scheduler or a serial sched-
uler. With reference to Figure 4.2 again, if the central scheduler chooses process 0, then 
until x[0] has changed from true to false, process 1 cannot evaluate the guard or execute 
an action. So the computation terminates and the goal is reached in one step. This illus-
trates that the choice of the type of scheduler can make a difference in the behavior of a 
distributed system.

To simulate the distributed scheduling model under fine-grained atomicity, each process 
must maintain a private copy of the state of each of its neighbors. Let k ∈ N(i). Let s[i, k] 
designate the local copy of the state x[k] of process k as maintained by process i. The evalu-
ation of the guard by process i is a two-phase operation: in the first phase, process i cop-
ies the state of each neighbor k, that is, ∀k ∈ N(i), s[i, k] := x[k]. In the second phase, each 
process evaluates its guard(s) using the local copies of its neighbors’ states and decides if an 
action will be scheduled. The number of steps required to copy the neighbors’ states will 
depend on the grain of atomicity and the size of the state space. For example, when read–
write atomicity is assumed, only one variable of a neighbor is copied at a time, and all read 

* A demon is an alternative name for a scheduler.
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and write operations on x[k] are interleaved. However, the coarse-grained atomicity model 
allows processes to read the states of all the neighbors in a single step.

The central or serial scheduler is a convenient abstraction that simplifies the reasoning 
about program correctness, but its implementation requires additional effort. Based on 
whatever hardware support is available, a central scheduler can be implemented by creat-
ing a single token in the entire system and circulating that token infinitely often among the 
processes in the system, as in a token ring network. Any process that receives the token is 
entitled to execute a guarded action before relinquishing the token to another process. The 
implementation of a single token requires an appropriate mutual exclusion protocol.

Central scheduling exhibits poor parallelism and poor scalability. Also its implementation 
in a distributed setting is nontrivial. This leads to the obvious question: Why should we care 
about central schedulers, when a strictly serial schedule often appears contrived? The primary 
reason is the relative ease of correctness proofs, as we will observe in Chapter 5. No system will 
correctly work under a distributed scheduler if it does not correctly work with a central sched-
uler. In restricted cases, correct behavior with a central scheduler guarantees correct behavior 
with a distributed scheduler. The following theorem represents one such case.

Theorem 4.1

If a distributed system works correctly with a central scheduler, and no enabled guard of a 
process is disabled by the actions of their neighbors, then the system is also correct with a 
distributed scheduler.

Proof: Assume that i and j are neighboring processes executing the guarded actions 
Gi → Si and Gj → Sj, respectively. Consider the following four events: (1) the evaluation of Gi 
as true, (2) the execution of Si, (3) the evaluation of Gj as true, and (4) the execution of Sj. With 
a distributed scheduler, these can be scheduled in any order subject to the constraint that (1) 
happens before (2) and (3) happens before (4). Without loss of generality, assume that the 
scheduler evaluates Gi first. Then, distributed schedulers allow the following three schedules:

  (1) (2) (3) (4)

  (1) (3) (4) (2)

  (1) (3) (2) (4)

However, by assumption, (4) does not affect (1), and (2) does not affect (3)—so these are 
causally independent events. Also, (2) and (4) are causally independent for obvious rea-
sons. Since the scheduling of causally independent events has no impact on the final out-
come, they can be swapped at will, which means

(1) (3) (4) (2) ≡ (1) (3) (2) (4) ≡ (1) (2) (3) (4)

that is, the second and the third schedules can be reduced to the first one by the appropriate 
swapping of events. But the first schedule corresponds to that of a central scheduler. ◾
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4.7 CONCLUDING REMARKS
The semantics of a distributed computation depend on specific assumptions about atomic-
ity and scheduling policies. In the absence of a complete specification, the weakest possible 
assumptions hold.

To illustrate the importance of atomicity and scheduling policies, let us take a second 
look at program switch in Section 4.3. Will this program terminate with a strongly fair 
scheduler, since the variable flag becomes true infinitely often? With the assumption about 
the atomicity of each guarded action, the answer is no. In fact, a weakly fair scheduler also 
does not guarantee termination. This is because an atomic statement is indivisible by defi-
nition, so each time the value of flag is monitored, it is found to be false.

Termination of program switch (Section 4.3) is possible with a strongly fair scheduler, 
when we split the first guarded statement as follows:

do a → flag := true;
[] a → flag := false
 … … …
od

Such a split reduces the grain of atomicity. However, even with this modification, a 
weakly fair scheduler cannot guarantee termination.

Finally, a note for programmers is that the language presented in this section is a speci-
fication language only. The goal is to correctly represent the permissible overlapping or 
interleaving of various types of actions as well as various possible scheduling policies that 
might influence the behavior of a distributed system. For the sake of simplicity, the use of 
additional notations have been reduced to a minimum and often substituted by unambigu-
ous sentences in English. Elsewhere, readers may find the use 〈S〉 to represent the atomic 
execution of S or different variations of [] to distinguish between strong and weak fair-
ness in scheduling policies—but we decided to get rid of such additional symbols, since 
the language is for human interpretation and not for machine interpretation. For an exact 
implementation of any of these programs in an existing programming language like Java 
or C++, one should not only translate the guards and the actions but also implement the 
intended grain of atomicity, nondeterminism, and the appropriate fairness of the sched-
uler. This may not always be a trivial task.

4.8 BIBLIOGRAPHIC NOTES
Dijkstra introduced guarded actions (commands) in [D75]. The same article showed 
the importance of nondeterminism and techniques for handling it. No one should miss 
Dijkstra’s landmark book A Discipline of Programming [D76] for an in-depth look at pro-
gram derivation and reasoning about its correctness. In [D68], Dijkstra illustrated the 
importance of atomic actions when he introduced the P and V operators for solving the 
CS problem. The database community is well versed with the concept of atomic actions 
in the specification of the ACID* properties of transactions. Lamport extensively stud-

* ACID is the acronym for atomicity, consistency, isolation, and durability.
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ied the role of atomicity in the correctness proof of concurrent programs (see [L77] and 
[L79]). In [L74], Lamport presented his bakery algorithm that showed how to implement 
a coarse-grained atomic action (like a CS) without the support of read–write atomicity 
at the hardware level. Francez presented a comprehensive study of fairness in his book 
[F86]—we have chosen only three important types of fairness here. Central and distrib-
uted schedulers are two prominent scheduling models in a distributed computation. It 
is unclear who introduced these first and seems to be folklore—but widely used in cor-
rectness proofs.

EXERCISES

4.1  Consider a completely connected network of n processes. Each process has an integer 
variable called phase that is initialized to 0. The processes operate in rounds—at the 
end of each round, every process sends the value of its phase to every other process 
and then waits until it receives the value of phase from every other process, after 
which the value of phase is incremented by 1, and the next round begins.

  Specify the program of each process using guarded actions in the state-reading model.
4.2  Consider a strongly connected network of n processes 0, 1, 2, …, n − 1. Any process i 

(called the source) can send a message to any other process j (called the destination) 
in the network. Each process i has a local variable vi. A message sent out by a source 
process i consists of (1) the sequence number of the message, (2) the source id, (3) the 
destination id, and (4) the value of vi. We focus on the routing of the messages.

  Any message has to be routed through zero or more processes. A process j receiving 
a message accepts it only if it is the destination and executes the assignment vj: = 
vi—otherwise, it forwards the message along its outgoing edges. The communication 
is considered to be complete, when at least one copy of the message reaches the desti-
nation, the value of the local variable is appropriately updated, and there are no other 
circulating messages or pending actions.

  Specify the communication from i to j using guarded actions in the message-passing 
model.

4.3  A soda machine accepts only quarters and dimes. A customer has to pay 50 cents 
to buy a can of soda from the machine. Specify the behavior of the machine using 
guarded actions. Assume that the machine rejects any coin other than quarters and 
dimes, since it cannot recognize those coins. Also, assume that the machine will not 
issue a refund if a customer deposits excess money.

4.4  In a graph G = (V, E), each node i ∈ V represents a process whose state is denoted by a 
nonnegative integer c(i). The program for each process i is described in the following:

 do ∃j ∈ N(i):c(i) = c(j) → c(i) := c(i)+ 1 od

  Transform the program from the state-reading model to the message-passing model 
using a round-based computation.
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4.5 Consider the following program:

program luck
define x,z : boolean
initially x = true
do x → z := ¬z
[] z → (x,z) := (false,false)
od

 Will the previous program terminate if the scheduler is (1) weakly fair or (2) strongly 
fair?

4.6  There are n distinct points 0, 1, 2, …, n − 1 on a 2D plane. Each point i represents a 
mobile robot that is controlled by a process Pi. Pi can read the position of the points 
(i − 1) and (i + 1) in addition to its own and execute an action to relocate itself to a new 
position.

   The goal of the following algorithm is to make the n points collinear (i.e., they fall on 
the same straight line) from arbitrary initial positions. Process P0 and Pn−1 do not do 
anything—every other process Pi(0 < i < n − 1) executes the following program:

program align {for i}
do (i − 1,i,i + 1) are not collinear → move i so that (i − 1,i,i + 1)
 are aligned od

  To make the three points collinear, assume that node i first modifies its y-value, and 
then modifies its x-value only if it becomes necessary.

Will the points be aligned if there is a central scheduler that allows only one pro-
cess to move at a time? What happens with distributed schedulers and fine-grained 
atomicity? Justify your answer.

4.7  A round-robin scheduler guarantees that between two consecutive actions by the same 
process, every other process with an enabled guard executes its action exactly once.

Consider a completely connected network of n processes. Assuming that a central 
scheduler is available, implement a round-robin scheduler using the locally shared-
memory model. Provide brief arguments in support of your implementation.

4.8  Alice, Bob, and Carol are the members of a library that contains, among many other 
books, single copies of the books A, B. Each member can check out at most two books, 
and the members promise to return the books within a bounded period. Alice periodi-
cally checks out the book A, and Bob periodically checks out the book B. Carol wants to 
use both books at the same time. How will the librarian ensure that Carol receives her 
books? Write the program for Alice, Bob, Carol, and the librarian. What kind of fairness 
is needed in your solution? Can you solve the problem using a weakly fair scheduler?

4.9  Consider the problem in Exercise 4.8, and now assume that there are four members 
Alice, Bob, Carol, and David, who are trying to share single copies of four books A, B, 
C, D from the library. Periodically, Alice wants both A and B, Bob wants both B and C, 
Carol wants both C and D, and David wants both D and A, and each member promises 
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to return the books in a bounded time. Write the program for the four members and 
librarian so that every member eventually receives their preferred books.

4.10  A distributed system consists of a completely connected network of three pro-
cesses. Each process wants to pick a unique identifier from the domain Z = {0, 1, 2}. Let 
name[i] represent the identifier chosen by process i. The initial values of identifiers 
are arbitrary. A suggested solution with coarse-grained atomicity is as follows:

program pick-a-name {for process i}
define name: integer ∈ {0, 1, 2}
do ∃j ≠ i:name[j] = name[i] ∧ x ∈ Z\{name[k]:k ≠ i} → name[i] := x
od

 a. Verify if the solution is correct, and if not, then fix it.
 b.  Suggest a solution using read–write atomicity. Briefly justify why your solution 

will work.
4.11 Consider a ring of n(n > 2) identical processes. The processes are sympathetic to one 

another, so that when any process i executes an action, every process j ≠ i executes the 
same action. Represent the operation of the processes using guarded actions using 
the message-passing model. 
(Hint: This is a consensus problem, where the processes have to agree about the next 
action to be executed.)

4.12 (Studious philosophers) Three philosophers 0, 1, and 2 are sitting around a table. Each 
philosopher’s life alternates between reading and writing. There are three books on the 
table B0, B1, and B2—each book is placed between a pair of philosophers (Figure 4.4). 
While reading, a philosopher grabs two books—one from the right and one from the 
left. Then he or she reads them, takes notes, and puts the books back on the table.

 a.  Propose a solution to the previous resource-sharing problem by describing the 
life of a philosopher. A correct solution implies that each philosopher can eventu-
ally grab both books and complete the write operation. Your solution must work 

B0

B1B2

0
1

2

FIGURE 4.4 Three studious philosophers 0, 1, 2.
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with a strongly fair scheduler, which means that if a book appears on the table 
infinitely often, the philosopher will eventually grab that book. (Your solution 
may not work with a weakly fair scheduler.)

 b.  Next, propose a solution (once again by describing the life of a philosopher) that 
will work with a weakly fair scheduler too. Provide brief arguments why your 
solution will work.

4.13 Three PhD candidates are trying to concurrently schedule their PhD defenses. In 
each committee, there are five members. No student has a prior knowledge of the 
schedule of any faculty member, so they ask each faculty member when they will be 
available. Once a member makes a commitment, he or she cannot back out unless 
the student requests to cancel the appointment. Suggest an algorithm for committee 
formation that leads to a feasible schedule, assuming that such a schedule exists.
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C h a p t e r  5

Program Correctness

5.1 INTRODUCTION
The designer of a distributed system has the responsibility of certifying the correctness of 
the system before the users start using it. This guarantee must hold as long as every hard-
ware and software component works according to its specification. A system may func-
tion incorrectly when its components fail, or the process states are corrupted by external 
perturbations, and there is no provision for fault tolerance. This chapter explains what 
correctness criteria are considered important for distributed systems and how to prove the 
correctness properties.

Consider a distributed system consisting of n processes 0, 1, 2, …, n − 1. Let si denote the 
local state of process i. The global state (also called the configuration) S of the distributed sys-
tem consists of the local states of all the processes and is defined as S = s0 × s1 × s2 × ⋯ × sn−1. 
While this is adequate for systems that use shared memory for interprocess communica-
tion, for message-passing models, the global state also includes the states of the channels. 
The global state of a distributed system is also called its configuration.

From any global state si, the execution of an eligible action takes the system to the next 
state Si+1. The central concept is that of a transition system. A computation is a sequence of 
atomic actions S0 → S1 → S2 → ⋯ → Sf that transforms a given initial state S0 to a final state Sf. 
A sequence of states and state transitions is also called a behavior of the system. With par-
tial ordering of events and nondeterministic scheduling of actions, such sequences are not 
always unique—depending on the system characteristics and implementation policies, the 
sequence of actions from any given configuration can vary from one run to another. Yet, 
from the perspective of a system designer, it is important to certify that the system operates 
correctly for every possible run.

Figure 5.1 represents the history of a computation that begins from the initial global 
state A and ends in the final global state L. Each arc corresponds to an atomic action that 
causes a state transition. Note that in each of the states B and G, there are two possible 
actions: this corresponds to either data-dependent actions or nondeterministic choices 
made by the scheduler(s). The history can be represented as the set of the following three 
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state sequences: {ABCDEFL, ABGHIFL, ABGJKIFL}. If a computation does not terminate, 
then some of the behaviors can be infinite.

Regardless of what properties are considered to judge correctness, a handful of test runs 
of the system can never guarantee that the system will behave correctly under all possible 
circumstances. This is because such test runs may at best certify the correctness for some 
specific behaviors but can rarely capture all possible behaviors. To paraphrase Dijkstra, 
“test runs can at best reveal the presence of bugs, but not their absence.”

It is tempting to prove correctness by enumerating all possible interleavings of atomic 
actions and reasoning about each of these behaviors. However, there is a scalability cliff—
due to the explosive growth in the number of such behaviors, this approach soon turns out 
to be impractical, at least for nontrivial distributed systems. For example, with n processes 
each executing a sequence of m atomic actions, the total number of possible interleavings is
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Even for modest values of m and n, this is a very large number.* Therefore, to exhaustively 
test even a small system within a reasonable time, the computing capacity available with 
today’s largest and fastest computers becomes inadequate.

5.2 CORRECTNESS CRITERIA
Most of the useful properties of a system can be classified as either liveness or safety 
properties.

5.2.1 Safety Properties

A safety property intuitively implies that “bad things never happen.” Different systems have dif-
ferent notions of what can be termed as a bad thing. Consider the history shown in Figure 5.1 
and let a safety property be specified by the following statement: “the value of a certain integer 

* For n = 10, m = 4, this number >1034.
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FIGURE 5.1 The history of a distributed system: the circles represent states and the arcs represent 
actions causing state transitions.
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variable temperature should never exceed 100.” If this safety property has to hold for a system, 
then it must hold for every state of the system. Thus, if we find that in state G temperature = 107, 
then we immediately conclude that the safety property is violated—we need not wait for what 
will happen to temperature after state G. To demonstrate that a safety property is violated, it is 
sufficient to demonstrate that it does not hold during an initial prefix of a behavior. Many safety 
properties can be specified as an invariant over the global state of the system. What follows are 
some examples of safety properties in well-known synchronization problems.

Mutual exclusion: Consider a number of processes trying to periodically enter a critical 
section. Once a process successfully enters the critical section, it is expected to do some 
work, exit the critical section, and then try for a reentry later. The program for a typical 
process has the following structure:

do true →
 entry protocol;
 critical section;
 exit protocol
od

Here, a safety property is that at most one process can be inside its critical section. 
Accordingly, the safety invariant can be written as Ncs ≤ 1 where Ncs is the number of pro-
cesses in the critical section at any time. A bad thing corresponds to a situation in which 
two or more processes are in the critical section at the same time.

Bounded capacity channel: A transmitter process P and a receiver process Q are commu-
nicating through a channel of bounded capacity B. The usual conditions of this communi-
cation are as follows: (1) The transmitter should not send messages when the channel is full, 
and (2) the receiver should not receive messages when the channel is empty. The following 
invariant represents a safety property that must be satisfied in every state of the system:

 nC nP nC B≤ ≤ +

where
nP is the number of items produced by the transmitter process
nC is the number of items consumed by the receiver process
B is the channel capacity

Let B = 20. A bad thing happens when nP = 45, nC = 25, and the producer produces one 
more item and puts it into B.

Readers and writers’ problem: Assume that nR reader processes simultaneously read a 
shared file that is updated by nW writer processes. To prevent the content of the file from 
being garbled and to help the readers read out meaningful copies, (1) the writers must get 
exclusive access to the file, and (2) the readers must access the file only when no writer is 
writing. This safety property can be expressed by the invariant

 ( ) ( ) ( ) ( )nW nR nW nR≤ ∧ = ∨ = ∧ ≥1 0 0 0
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A bad thing will happen if a writer process is granted write access when a reader is 
reading the file.

Absence of deadlock: A system is deadlocked when it has not reached the final configura-
tion, but no process has an eligible action, making further progress impossible. Clearly, 
deadlock is a bad thing for any distributed system. Consider a computation that starts from 
a configuration that satisfies the precondition P and is expected to satisfy the postcondi-
tion Q upon termination. Let GG be the disjunction of all the guards of all the processes. 
Then the desired safety property can be expressed by the invariant Q∨GG.

Partial correctness: An important type of safety property is partial correctness. Partial cor-
rectness of a program asserts that if the program terminates, then the resulting state is 
the final state satisfying the desired postcondition. The bad thing here is the possibility 
of the program terminating with a wrong answer or entering into a deadlock. Using the 
example from the previous paragraph, a program is partially correct when ¬GG ⇒ Q, so 
the same safety invariant Q∨GG applies to partial correctness also. Partial correctness 
does not, however, say anything about whether the given program will terminate—that is 
a different and often a deeper issue.

The absence of safety can be established by proving the existence of a state that is reach-
able from the initial state and violates the safety criterion. To prove safety, it is thus necessary 
to assert that in every state that is reachable from the initial state, the safety property holds.

5.2.2 Liveness Properties

The essence of a liveness property is that “good things eventually happen.” Eventuality is a 
tricky issue—it simply implies that the event happens after a finite number of actions, but 
no expected upper bound for the number of actions is implied in the statement.* Consider 
the statement:

Every criminal will eventually be brought to justice.

Suppose that the crime was committed on January 1, 1990, but the criminal is still at large. 
Can we say that the statement is false? No—since who knows, the criminal may be cap-
tured tomorrow! It is impossible to prove the falsehood of a liveness property by examining 
a finite prefix of the behavior. Of course, if the accused person is taken to court today and 
proven guilty, then the liveness property is trivially proved. But this may be a matter of luck 
or may depend on many other things—the definition does not specify how long we have 
to wait for a liveness property to hold, as long as the waiting period is finite. Here are some 
examples of well-known liveness properties:

Progress: Let us revisit the classical mutual exclusion problem, where a number of processes 
try to enter their critical sections. A desirable feature here is that once a process executes 
its entry protocol to declare its intention to enter its critical section, it must make progress 

* In probabilistic systems where the course of actions is decided by flipping a coin, it is sufficient to guarantee that the 
events happen with probability 1.
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toward the goal and eventually enter the critical section. Thus, progress toward the critical 
section is a liveness property. Even if there is no deadlock, the progress is violated if there 
exists at least one infinite behavior, in which a process remains outside its critical section. 
The absence of guaranteed progress is known as livelock or starvation.

Fairness: Fairness is a liveness property, since it determines whether the scheduler will 
schedule an action in a finite time. Like most progress properties, fairness does not ordi-
narily specify when or after how many steps the action is scheduled.

Reachability: Reachability addresses the following question: Given a distributed system 
with an initial state S0, does there exist a finite behavior that changes the system state to Sk? 
If so, then Sk is said to be reachable from S0. Reachability is a liveness property.

Network protocol designers sometimes run simulation programs to test protocols. They 
explore the possible states that the protocol could lead the system into and check if any 
of these is a bad or undesirable state. However, even for small protocols with a few lines 
of code, the number of states can sometimes be so large that most simulations succeed in 
reaching a fraction of the set of possible states within a reasonable time. Many protocols 
are certified using this type of testing. The testing of reachability through simulation is 
rarely foolproof and takes a heavy toll of system resources, often leading to the so-called 
state-explosion problem. Testing a protocol is not an alternative to proving its correctness.

Termination: Program termination is a liveness property. It guarantees that starting from the 
initial state, every feasible behavior leads the system to a configuration in which all the guards are 
false and the terminal configuration is reached. Recall that partial correctness simply ensures 
that the desired postcondition holds when all guards are false. It does not tell us anything about 
whether the terminal state is reachable via all admissible behaviors. Thus, total correctness of a 
program is the combination of partial correctness and termination. Here is an example:

Example 5.1

Consider a system of four processes P0 through P3 as shown in Figure 5.2. Each pro-
cess has a color c represented by an integer from the set {0,1,2,3}. Let c[i] represent the 
color of process Pi. The objective is to devise an algorithm, so that regardless of the 
initial colors of the different processes, the system eventually reaches a configuration 
where no two adjacent processes have the same color.

P0

P1 P

P3

FIGURE 5.2 A system of four processes: each process tries to acquire a color that is different from 
the colors of its neighbors.
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Let N(i) denote the set of neighbors of process Pi. We propose the following pro-
gram for every process Pi to get the job done:

program colorme{for process Pi}
do ∃Pj ∈ N(i):c(i) = c[j] → c[i] = c[i] + 2 mod 4 od

Is the program partially correct? By checking the guards, we conclude that if the pro-
gram terminates, that is, if all the guards are false, then the following condition holds:

 ∀ ∈ ≠P N i c i c jj ( ) : [ ] [ ]  (5.1)

By definition, this is the desired postcondition. So the system is partially correct.
However, it is easy to find out that the program may not terminate. Consider the 

initial state A c[0] = 0, c[1] = 0, c[2] = 2, c[3] = 2. Figure 5.3 shows a possible sequence 
of actions ABCDEFGHIJKLA in which the system returns to the starting state A 
without ever satisfying the desired postcondition (5.1). This cyclic behavior demon-
strates that it is possible for the program to run forever. Therefore, the program is 
partially correct, but not totally correct.

Note that it is possible for this program to reach one of the terminal states X or Y if the 
schedulers choose an alternate sequence of actions. For example, if in state A, process P1 
makes a move, then the state c[0] = 0, c[1] = 2, c[2] = 2, c[3] = 2 is reached and condition 
(5.1) is satisfied! However, termination is not guaranteed as long as there exists a single 
infinite behavior where the conditions of the goal state are not satisfied. This makes 

0,0,2,2

2,0,2,2

2,0,0,2

0,0,0,2

0,2,0,2 2,2,0,2 2,2,0,0

0,2,0,0

0,2,2,0

2,2,2,0

0,0,2,0 2,0,2,0A
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D
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H

I

J
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L

2,0,0,0

X

0,2,2,2

Y

P0

P0

P0

P0

P0

P0

P2

P1

P3

P3

P1

P3

P1

P2

P1

P2

Each state denotes 
the values of

c[0],c[1],c[2],c[3]

FIGURE 5.3 A partial history of the system in Figure 5.2 where the edges are labeled with the iden-
tifiers of the processes causing that transition: it shows an infinite behavior ABCDEFGHIJKLA. 
Note that X, Y are terminal states and are reachable, but there is no guarantee that the adversary 
will choose the transitions leading to those states.
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the protocol incorrect. In this context, it is important to understand the role of the adver-
sary (or the demon or the scheduler). For every distributed algorithm, think of an invisible 
adversary that is trying to challenge your design with the worst possible schedule. When 
you feel assured that the terminal state is reachable, the omniscient adversary explores 
if there exists a single behavior that can prevent the algorithm for reaching the terminal 
state within a bounded time. If such a behavior is found, then the adversary wins, and you 
lose. The adversary here represents the real world. To win against the adversary and guar-
antee termination, one must ascertain that there is no behavior that prevents the system 
from reaching the terminal configuration in a bounded number of steps.

Although most useful properties of a distributed system can be classified either 
as liveness or a safety property, there are properties that belong to neither of these 
two classes. Consider the statement, “there is a 90% probability that an earthquake 
of magnitude greater than 9.5 on the Richter scale will hit California before the year 
2025.” This is neither a liveness nor a safety property.

An implicit assumption made in this chapter is that all well-behaved programs 
eventually terminate. This may not always be the case—particularly for open or 
dynamic systems. An open system (also called a reactive system) responds to changes 
in the environment. Many real-time systems like the telephone network or the air-
traffic control network are open systems. A system that assumes the environment to 
be fixed is a closed system.

Correctness also depends on assumptions made about the underlying model. Such 
assumptions include program semantics, the choice of the scheduler, or the grain of 
atomicity. A given property may hold if we assume strong fairness, but may not hold 
if we assume weak fairness. Another property may be true only if we choose a coarse-
grain atomicity but may cease to hold with fine-grain atomicity.

5.3 CORRECTNESS PROOFS
The set of possible behaviors of a distributed system can be very large, and testing is not 
a feasible way of demonstrating the correctness of nontrivial system. What is required 
is some form of mathematical reasoning. Established methods like proof by induction or 
proof by contradiction are widely applicable. However, mathematical tools used to prove 
correctness often depend on what properties are being investigated. The techniques for 
proving safety properties are thus different from the techniques for proving liveness prop-
erties. In this chapter, we will review some of the well-known methods for proving correct-
ness, as well as a few formal systems and transformation techniques that lead to a better 
understanding of the semantics of distributed computation. We particularly focus on the 
following four topics:

 1. Assertional methods of proving safety properties

 2. Use of well-founded sets for proving liveness properties

 3. Programming logic

 4. Predicate transformers
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Most of these methods require a good understanding of propositional logic and predicate 
logic. We therefore begin with a brief review of propositional and predicate logic.

5.3.1 Quick Review of Propositional Logic

A proposition is a statement that is either true or false. Thus, Alice earns $2000 a month is a 
proposition, but x is very large is not a proposition. The axioms and expressions of propo-
sitional logic use the following symbols:

• The propositional constants true and false represent universal truth and universal 
falsehood, respectively.

• The propositional variables P, Q, R, etc., can have a value true or false.

• The propositional operators ¬∧∨= capture the notions of not, and, or, implies, and 
equal to, respectively, in commonsense reasoning.

The basic axioms of propositional logic are shown in Figure 5.4. Readers are encouraged 
to reason each of these axioms using commonsense. These axioms can be used to prove 
every assertion in propositional logic. Consider the following example.

Example

Prove that P ⇒ P∨Q.

Proof P ⇒ P∨Q
 = ¬P∨(P∨Q) {Axiom 5}
 = (¬P∨P)∨Q {Axiom 8a}
 = (¬P∨P)∨Q {Axiom 1a)
 = true ∨ Q  {Axiom 7a}
 = true  {Axiom 2a}

0. ¬ ¬( )P

1(a). P P true∨ ¬ = 1(b). P P false∧ ¬ =

2(a). P true true∨ = 2(b). P false false∧ =

3(a). P false P∨ = 3(b). P true∧ = P

4(a). P P P∨ = 4(b). P P∧ = P

5. ( ⇒ = ¬ ∨P Q P Q)

6. ( ) (P Q P Q Q P= = ⇒ ∧ ⇒) ( )

7(a). P Q Q P∨ = ∨ 7(b). P Q Q P∧ = ∧

8(a). P Q R P Q R∨ ∨ = ∨ ∨( ) ( ) 8(b). P Q R P Q R∧ ∧ = ∧ ∧( ) ( )

9(a). P Q R P Q P R∧ ∨ = ∧ ∨ ∧( ) ( ) ( ) 9(b). P Q R P Q P R∨ ∧ = ∨ ∧ ∨( () ( ) )

10(a). ¬ ∧ = ¬ ∨ ¬( )P Q P Q 10(b). ¬ ∨ = ¬ ¬( )P Q P Q

FIGURE 5.4 The basic axioms of propositional logic.
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Pure propositional logic is not adequate for proving the properties of a program, since 
propositions cannot be related to program variables or program states. This is, however, 
possible using predicate logic, which is an extension of propositional logic.

5.3.2 Brief Overview of Predicate Logic

Propositional variables, which are either true or false, are too restrictive for real applica-
tions. In predicate logic, predicates are used in place of propositional variables. A predicate 
specifies the property of an object or a relationship among objects. Consider a program 
variable x. Then the relation x < 1000 is a predicate. A predicate is associated with a set, 
whose properties are often represented using the universal quantifier ∀ (for all) and the 
existential quantifier ∃ (there exists). A predicate using quantifiers takes the following form:

<Quantifier> <bound variable(s)> : <range> :: <property>

Examples of predicates using quantifiers are as follows:

• (∀x, y : x, y are positive integers :: x ⋅ y = 63) designates the set of values {(1, 63), (3, 21), 
(7, 9), (9, 7), (21, 3), (63, 1)} for the pair of bound variables (x, y).

• A system contains n(n > 2) processes 0, 1, 2,…n − 1. The state of each process 
is either 0 or 1. Then the predicate (∀i, j : 0 ≤ i, j ≤ n − 1:: state of process i = state of 
process j) characterizes a property that holds for the set of processes {0, 1, 2, … n − 1}. 
Some widely used axioms with quantified expressions are shown in Figure 5.5.

The axioms of predicate logic are meant for formal use. However, for the sake of developing 
familiarity with these axioms, we encourage the reader to develop an intuitive understand-
ing of these axioms. As an example, consider the infinite set S = {2, 4, 6, 8, …}. Here, “for 
all x in the set S, x is positive and even” is true. Application of Axiom 5 in Figure 5.5 and 
Axiom 10a in Figure 5.4 leads to the equivalent statement: “there does not exist an element 
x in the set S, such that x is not even or not positive”—a fact that can be understood without 
any difficulty.

1

2

. : :: ( : :: ) ( : :: )

. : :: ( : :: ) ( :

∀ ∨ = ∀ ∨ ∀

∀ ∧ = ∀ ∧ ∀

x R A B x R A x R B

x R A B x R A x R ::: )

. : :: ( : :: ) ( : :: )

. : :: ( : :: )

B

x R A B x R A x R B

x R A B x R A

3

4

∃ ∨ = ∃ ∨ ∃

∃ ∧ = ∃ ∧ (( : :: )

. : :: ( : :: )

. : :: ( : :: )

∃

∀ = ¬ ∃ ¬

∃ = ¬ ∀ ¬

x R B

x R x R A

x R A x R A

5 A

6

FIGURE 5.5 Some widely used axioms in predicate logic.
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5.4 ASSERTIONAL REASONING: PROVING SAFETY PROPERTIES
Assertional methods have been extensively used to prove the correctness of sequential 
programs. In distributed systems, assertional reasoning is an important tool for proving 
safety properties. Let P be an invariant representing a safety property. To demonstrate that 
P holds for every state of the system, we will use the method of induction. We will show 
that (1) P holds in the initial state, and (2) if P holds at a certain state, then the execution 
of every action enabled at that state preserves the truth of P. A simple example is given in 
the following:

Example 5.2

Consider the system of Figure 5.6 where a pair of processes T and R communicates 
with each other by sending messages along the channels c1 and c2. Process T has 
a local variable t, and process R has a local variable r. The program for T and R are 
described in the following paragraph. We will demonstrate that the safety prop-
erty P, “The total number of messages in both channels is ≤10,” is an invariant for 
this system.

(Communication between two processes T and R)
define c1,c2: channel;
initially c1 = Ø, c2 = Ø;
{program for T}
define t: integer {initially t = 5}
1 do t > 0 → send a message along c1; t := t − 1
2 [] ¬empty(c2) → receive a message from c2; t := t + 1
 od
{program for R}
define r: integer {initially r = 5}
3 do ¬empty(c1) → receive a message from c1; r := r + 1
4 [] r > 0 → send a message along c2; r := t − 1
 od

Let n1 and n2 denote the number of messages in the channels c1 and c2, respec-
tively. To prove the safety property P, we will establish the following invariant:

 I t r n t n r≡ ≥ ∧ ≥ ∧ + + + =( ) ( ) ( )0 0 1 2 10

T R

c1

c2

FIGURE 5.6 A two-process system.
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It trivially follows that I ⇒ P. We now prove by induction that I holds at every state 
of the system.

Basis: Initially, n1 = 0, n2 = 0, t = 5, r = 5 so I holds.

Inductive step: Assume that I holds in the current state. We need to show that I will 
hold after the execution of every eligible guarded action in the program.

{After action 1} The values of (t + n1), n2, and r remain unchanged. Also, since the 
guard is true when t > 0, and the action decrements t by 1, the condition t ≥ 0 
continues to hold. Therefore, I holds.

{After action 2} The values of (t + n2), n1, and r remain unchanged. Also, the value 
of t can only be incremented, so t ≥ 0 holds. Therefore, I continues to hold.

{After action 3} The values of (r + n1), n2, and t remain unchanged. Also, the value 
of r can only be incremented, so r ≥ 0 holds. Therefore, I continues to hold.

{After action 4} The values of (r + n2), n1, and t remain unchanged. Also, since the 
guard is true when r > 0 and the action decrements r by 1, the condition r ≥ 0 
continues to hold. Therefore, I holds.

To summarize, I is true in the initial state. Also, if I holds at a certain state, then I holds 
at the following state. Therefore, I holds in every state of the system. Since I ⇒ P, P holds.

5.5 PROVING LIVENESS PROPERTIES USING WELL-FOUNDED SETS
A classical method of proving a liveness property is to discover a mapping function f : 
S → WF, where S is the set of global states of the system and WF = {w1, w2, w3, …} is a well-
founded set. Among the elements of the well-founded set, there should be a total order ≫, 
such that the following two properties hold:

• There does not exist any infinite chain w1 ≫ w2 ≫ w3… in WF.

• If an action changes the system state from s1 to s2, and w1 = f(s1), w2 = f(s2), then 
w1 ≫ w2.

Eventual convergence to a goal state is guaranteed by the fact that if there exists an infinite 
behavior of the system, then it must violate the first property. The function f is called a 
measure function (also called a variant function), since its value is a measure of the prog-
ress of computation toward its goal.

The important issue in this type of proof is to discover the right WF and f for a given 
computation. A convenient (but not the only possible) choice of WF is the set of nonnegative 
integers, with ≫ representing the > (greater than) relationship. In this framework, the initial 
state maps some positive integer in WF and the goal state often corresponds to the integer 0. 
The proof obligation reduces to finding an appropriate measure function f, so that every eli-
gible action from a state S reduces the value of f(s). Another example of WF is a set of tuples 
with ≫ denoting the lexicographic order. The next example illustrates this proof technique.



94   ◾   Distributed Systems: An Algorithmic Approach

Example 5.3: Phase Synchronization Problem

Consider an array of clocks 0, 1, 2, …, n − 1 as shown in Figure 5.7. Each clock has 
three values 0, 1, 2 called its phase. These clocks tick at the same rate in lock-step syn-
chrony. Under normal conditions, every clock displays the same phase. This means 
that if every clock displays x at the current moment, then after the next step (i.e., clock 
tick), all clocks will display (x + 1)mod 3. When the clocks exhibit this behavior, we 
say that their phases are synchronized.

Now assume that due to unknown reasons, the clocks are out of phase. What pro-
gram should the clocks follow so that eventually their phases are synchronized and 
remain synchronized thereafter?

Let c[i] represent the phase of clock i and N(i) denote the set of neighbors of 
clock i. We choose the model of locally shared variables, where each clock reads the 
phases of all of its neighbors in one atomic step but updates only its own phase. We 
propose the following program for every clock i:

{program synch: program for clock i)
do ∃j ∈ N(i):c[j] = c[i] + 1 mod 3 → c[i] := c[i] + 2 mod 3
[] ∀j ∈ N(i):c[j] ≠ c[j] + 1 mod 3 → c[i] := c[i] + 1 mod 3
od

Before demonstrating the proof of convergence (which is a liveness property), 
we encourage the readers to try out a few cases and watch how the phases are 
synchronized after a finite number of clock ticks. Observe that once the clock 
phases are synchronized, they remain so forever, since only the second action is 
chosen.

To prove convergence to a good state using a well-founded set, first consider a pair 
of neighboring clocks i and (i + 1). If c[i + 1] = c[i] + 1mod 3, then draw an arrow (←) 
from clock (i + 1) to i; else if c[i] = c[i + 1] + 1mod 3, then draw an arrow (→) from 
clock i to (i + 1). There is no arrow between i and (i + 1) when c[i] = c[i + 1]. From an 
arbitrary initial state (which may be reached via a failure or a perturbation), observe 
the following facts about the proposed protocol:

Observation 1: If a clock i(0 < i < n − 1) has only a → but no ← pointing toward 
it, then after one step, the → will shift to clock (i + 1). In the case of i = n − 1, 
the → will disappear after one step. There can be no arrow pointing toward 
clock 0.

...0 1 2 3 n–1

c[0] c[1] c[2] c[3] c[n–1]

FIGURE 5.7 An array of three-phase clocks: every clock ticks as 0, 1, 2, 0, 1, 2, … .
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Observation 2: If a clock i (0 < i < n − 1) has only a ← but no → pointing toward it, 
then after one step, the ← will shift to clock i − 1. In the case of i = 0, this arrow 
will disappear after one step. There can be no arrow pointing towards clock n − 1.

Observation 3: If a clock i (0 < i < n − 1) has both a ← and a → pointing toward it, 
then after one step, both arrows will disappear. This possibility is ruled out for 
both clock 0 and clock n − 1.

To prove that the clocks will eventually synchronize, define a function D that maps 
the set of global states of the system to a set of nonnegative integers:

 D d d d d n= + + + + −[ ] [ ] [ ] [ ]0 1 2 1�

where
d[i] = 0 if there is no arrow pointing toward clock i
 = i + 1 if there is a ← pointing toward clock i
 = n − 1 if there is a → pointing toward clock i
 = 1 if there are both a ← and a → pointing toward clock i

By definition, ∀i: d(i) ≥ 0, so D ≥ 0. Based on observations 1–3, if D > 0, then D will 
decrease after each step of the proposed algorithm. Therefore, regardless of the size of 
the system, in a bounded number of moves, the value of D will be reduced to 0, after 
which the first guard of the proposed program will no longer be enabled, and the 
phases of all the clocks will be synchronized. Once synchronized, they will remain 
so thereafter (action 2). 

Such counting arguments help compute the upper bound on the number of steps 
required for convergence to the target configuration. Each arrow can take at most n − 1 
steps to disappear, and the arrows move synchronously. Therefore, it requires at most 
n − 1 clock ticks for the phases to be synchronized.

Nondeterminism and fairness models sometimes make it difficult to compute an upper 
bound for time complexity. Consider the following example:

program step
define m,n: integer
initially m = 1, n = 0
do m ≠ 0 → m:= 0
[] m ≠ 0 → n:= n + 1
od

If the scheduler is unfair, then termination of the aforementioned program is not guar-
anteed. With a weakly fair scheduler, termination is guaranteed, but it is impossible to 
determine as such after how many steps this program will terminate, since there is no clue 
about when the first action will be scheduled. Much will depend on how the nondetermin-
ism and fairness models are implemented.
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5.6 PROGRAMMING LOGIC
Programming logic, first introduced by Hoare [H69, H72], is a formal system that manip-
ulates predicates consisting of program states and relations characterizing the effects of 
program execution. One can reason about many aspects of program correctness using the 
rules of programming logic.

A program S transforms a precondition P that holds before the execution of the program 
into a postcondition Q that holds after the execution of the program. In programming 
logic, this is represented using the triple:

 { } { }P S Q

Here, P and Q are predicates or assertions. An example of a triple is

 { } : { }x x x x= = + =5 1 6

Every valid triple is called a theorem of programming logic. A theorem can be derived from 
more basic theorems (called axioms) using the transformation rules of programming logic. 
Some important axioms of programming logic are presented in the following:

Axiom 5.1

{P} skip {P} (skip means do nothing)

Axiom 5.2

{Q[x ← E]} x: = E{Q}

Here, E denotes an expression or a value, x ← E is an assignment, and Q[x ← E] denotes 
the condition derived from Q by substituting every occurrence of the variable x by the cor-
responding expression E. Consider the following examples, where ? denotes the unknown 
precondition of the triple {?} S {Q}:

Example 5.4

  {?} x: = 1 {x = 1}
 ? ( )= = =1 1 true

  Thus, {true}x:= 1{x = 1} is a theorem.

Example 5.5

  {?} x: = 2x + 1 {x > 99}
 ? ( ) ( ) ( )= + > = > = >2 1 99 2 99 49x x x

 Thus, {x > 49}x: = 2x + 1{x > 99} is a theorem.
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Example 5.6

  {?} x: = 100 {x = 0}

 ? ( )= = =100 0 false

 Thus, {false} x: = 100 {x = 0} is a theorem.

Axiom 5.3

{Q[x ← y, y ← x]} (x, y): = (y, x) {Q}

Axiom 5.3 tells us how to compute the precondition in case of a swap. Here, Q[x ← y, 
y ← x] implies simultaneous substitution of x by y and y by x in Q.

Appropriate inference rules extend the applicability of the axioms of programming logic. 
Let the notation  H/C designate the fact that the hypothesis H leads to the conclusion C. To 
illustrate the use of these inference rules, consider the triple:

 { } : { }x x x x= = + >100 2 1 99

Intuitively, this is a correct triple. But how do we show that it is a theorem in program-
ming logic? Example 5.5 computes the corresponding precondition as (x > 49), which is 
different from (x > 100)! However, it follows from simple predicate logic that (x = 100) ⇒ 
(x > 49), so the triple {x = 100}x: = 2x + 1{x > 99} should be a theorem. Similarly, {x = 100}
x: = 2x + 1{x > 75} should also be a theorem, since(x = 99) ⇒ (x > 75). The inference rule 
can now be represented by Axiom 5.4:

Axiom 5.4

( ,{ } { }, )

{ } { }

′ ⇒ ⇒ ′
′ ′

P P P S Q Q Q

P S Q

The essence of the aforementioned axiom is that the strengthening of the precondition 
and the weakening of the postcondition have no impact on the validity of a triple.

Axiom 5.5 illustrates how inference rules can help specify the semantics of the sequen-
tial composition operator “;.”

Axiom 5.5

({ } { },{ } { })

{ } ; { }

P S R R S Q

P S S Q
1 2

1 2
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Example 5.7

Prove that {y > 48} x: = y + 1; x: = 2x + 1 {x > 99} is a theorem.

 { } : { }x x x x> = + >49 2 1 99  (Example 5.5) (5.2)

Also, {y + 1 > 49} x: = y + 1 {x > 49} (Axiom 5.2).
This implies 

 {y > 48} x: = y + 1{x > 49} (5.3)

Therefore, {y + 1 > 49} x: = y + 1{x > 99} {using (5.2), (5.3), and Axiom 5.5}.

Now consider the alternative construct IF in a triple {P}IF{Q}:

if G1 → S1
[] G2 → S2
.
.
[] Gn → Sn
fi

Assume that the guards are disjoint and let GG = G1∨G2∨⋯∨Gn. When ¬GG holds 
(which means all guards are false), IF reduces to a skip statement. From Axiom 5.1, it fol-
lows that (¬GG∧P) ⇒ Q. However, if some guard Gi is true, then the execution of Si leads 
to the postcondition Q, so {P∧Gi}Si{Q} is a theorem. These interpretations lead to the fol-
lowing semantics of the alternative construct:

Axiom 5.6

( ,{ } { } : )

{ } { }

¬ ∧ ⇒ ∧ ≤ ≤GG P Q P G S Q i n

P IF Q
i i 1

Finally, consider the iterative construct DO in the triple {P}DO{Q}:

do G1 → S1
[] G2 → S2
.
.
[] Gn → Sn
od

The semantics of this iterative construct can be represented in terms of a loop invariant. 
A loop invariant I is a predicate that is true at every stage from the beginning to the end 
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of a loop. Initially, P ≡ I. Also, in order that the postcondition Q holds, the loop must ter-
minate—so ¬GG must eventually hold. Therefore, Q = ¬GG ∧ I. Furthermore, since the 
execution of each Si preserves the invariance of I, {I ∧ Gi} Si {I} holds. Combining these 
facts, we obtain the following axiom:

Axiom 5.7

({ } { } : )

{ } { }

I G S I i n

I DO GG I
i i∧ ≤ ≤

¬ ∧
1

Note that in DO loops, programming logic cannot determine if the loop will terminate—it 
can only decide that if the program terminates, then the postcondition holds.

The axioms of predicate logic and programming logic have useful applications in cor-
rectness proofs. An example of application is the assertional proof of sequential programs. 
Starting from the given precondition P for a program S = S1; S2; S3; …; Sn, the assertion Qi 
is computed after the execution of each statement Si. The program is proven to be correct 
when Qn ⇒ Q, the desired postcondition. An annotated program showing the intermediate 
assertions is called a proof outline.

5.7 PREDICATE TRANSFORMERS
Consider the question: “What is the largest set of initial states, such that the execution of 
a program S starting from any of these states (1) is guaranteed to terminate and (2) results 
in a postcondition Q?” This question is of fundamental importance in the field of program 
derivation, and we will briefly address it here. The set of all initial states satisfying the 
aforementioned two conditions is known as the weakest precondition wp(S, Q). Since wp 
maps the predicate Q into the predicate wp(S, Q), it is also called a predicate transformer. 
If P ⇒ wp(S, Q), then {P} S {Q} is a theorem in programming logic. Note that a theorem in 
programming logic does not require termination, whereas predicate transformers imply 
properly terminating behavior. Some useful axioms with predicate transformers [D76] are 
given in the following:

Axiom 5.8

wp(S, false) = false (law of excluded miracle)

Proof Assume that for some program S, wp(S, false) ≠ false. Then there exists an initial 
state from which the execution of S terminates and results in a final state that satisfies false. 
But no state satisfies the predicate false.  ◾
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Axiom 5.9

If Q ⇒ R, then wp(S, Q) ⇒ wp(S, R) (property of monotonicity).

Axiom 5.10

wp(S, Q) ∧ wp(S, R) ⇒ wp(S, Q∧R)

Axiom 5.11

wp(S, Q) ∨ wp(S, R) ⇒ wp(S, Q∨R)

Proof
 wp(S, Q) ⇒ wp(S, Q∨R) (Axiom 5.9)
 Similarly, wp(S, R) ⇒ wp(S, Q∨R) (Axiom 5.9).
 Therefore, wp(S, Q)∨wp(S, R) ⇒ wp(S, Q∨R) (propositional logic). ◾

Note: For a deterministic computation, the ⇒ in Axiom 5.11 can be replaced by =. As an 
illustration, consider the following program, where nondeterminism plays a crucial role in 
deciding the value of x after every step:

Program toss;
define x : integer;
if true → x := 0
[] true → x := 1
fi

Here, wp(toss, x = 0) = false, and wp(toss, x = 1) = false
(since no initial state can guarantee that the final value of x will be 0 or 1).
However, wp(toss, x = 0 ∨ x = 1) = true
(since from every initial state, the final value of x must be either 0 or 1).

This is in agreement with the statement of Axiom 5.11, but it falls apart when the impli-
cation ⇒ is replaced by the stronger relation =. Now consider the next program mod, which 
is different from toss.

Program mod
define x: integer
if x = even → x := 0
[] x = odd  → x := 1
fi



Program Correctness   ◾   101  

Here, unlike program toss, regardless of the initial value of x, if wp(mod, x = 1) = false, 
then wp(mod, x = 1) = true and vice versa. Since wp(mod, x = 0 ∨ x = 1) = true, it is in agree-
ment with the note following Axiom 5.11. Of course, it is only an example and not a proof.

Axiom 5.12

wp S S Q wp S wp S Q1 2 1 2; , , ,( )( ) = ( )( ) 

Axiom 5.13

wp(IF, Q) = (¬GG ⇒ Q) ∧ (∀i: 1 ≤ i ≤ n:: Gi ⇒ wp(S1, Q))

The most significant difference from programming logic is in the semantics of the DO 
loop, since termination is a major issue. The predicate transformer of a DO statement 
requires the loop to terminate in k or fewer iterations (i.e., k being an upper bound). Let 
Hk(Q) represent the largest set of states starting from which the execution of the DO loop 
terminates in k or fewer iterations. The following two conclusions immediately follow:

• H0(Q) = ¬GG ⇒ Q

• Hk(Q) = H0(Q)∨wp(IF, Hk−1(Q))

Using these, the semantics of the DO loop can be specified as follows:

Axiom 5.14

wp(DO, Q) = ∃k ≥ 0: Hk(Q)

An extensive discussion of program derivation using predicate transformers can be found 
in [D76] and [G81].

5.8 CONCLUDING REMARKS
Formal treatments sharpen our reasoning skills about why a program should work or fail. 
While such treatments can be convincingly demonstrated for toy examples, formal reason-
ing of nontrivial examples is often unmanageably complex. This obviously encourages the 
study of automated reasoning methods. An alternative is program synthesis. A program S 
composed of a set of subprograms using a set of composition rules is guaranteed to work 
correctly, if each subprogram works correctly, and the composition rules are certified by 
the axioms of a formal program derivation system.

A powerful tool for reasoning about the dynamic behavior of programs and their 
properties is temporal logic. It provides a succinct expression for many useful program 
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properties using a set of temporal operators. Note that predicate logic and propositional 
logic cater to timeless properties. To take a peek at temporal logic, let us consider the two 
important operators ♢ and ◽. If P is a property, then consider the following:

• ◽ P implies that P is always true. This is useful for expressing invariants in safety 
properties.

• ♢ P implies that P will eventually become true. This is useful for expressing liveness 
properties.

The two operators are related as ◊P P= ¬ ¬( ) . This can be intuitively reasoned as follows: 
if P represents the property of termination of a program S, then the statement “the pro-
gram S will eventually terminate” can also be stated as “it is not always true that program 
S will not terminate.”

A formula is an assertion about a behavior. Every property can be expressed by a for-
mula, which is built from elementary formulas using the operators of propositional logic 
and the operators ♢ and ◽. The following are useful in dealing with temporal properties 
and can be reasoned with intuition:

 P Q P Q∧ = ∧( )

 P Q P Q∨ ⇒ ∨( )

(Note that P Q P Q∨ ≠ ∨( ), since if P and Q change with time, and Q = ¬P, then the left 
side may be false, but the right side is true.)

 ◊ ◊ ◊P Q P Q∨ = ∨( )

 ◊ ◊ ◊( ) ( ) ( )F G F G∨ = ∨

(Note that ◽♢P (always eventually true) is true for a behavior if and only if ♢P is true 
at all times during that behavior. This is synonymous with “P is true infinitely often.”). 
Finally,

 ◊ ◊P P⇒

Temporal logic formulas can be used to specify various fairness models introduced in 
Chapter 4. For example, consider the construct do Gi → Si []Gj → Sj od. Under a weakly 
fair scheduler, action Sj will be scheduled for execution if ♢◽Gj holds, which means there is 
a time t after which Gj will be always true. Under a strongly fair scheduler, action Sj will be 
scheduled for execution if ◽♢Gj holds, that is, Gj is true infinitely often.

To learn more about temporal logic, read Manna and Pnueli’s book [MP92].
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5.9 BIBLIOGRAPHIC NOTES
The original work on proving the correctness of sequential programs was done by Floyd 
[F67]. In [H69], Hoare developed the framework of programming logic. Ashcroft and 
Manna [AM71] were the first to prove properties of about concurrent programs. In [H72], 
Hoare extended his partial correctness proof of sequential programs to include concur-
rency. A more complete treatment of the subject is available in Susan Owicki’s disserta-
tion, a summary of which can be found in [OG76]. Here, Owicki and Gries proposed how 
to prove the partial correctness of concurrent programs where processes communicate 
through a shared memory.

Lamport [L77] introduced the terms safety and liveness. These were originally taken 
from the Petri net community who used the term safety to designate the condition that no 
place contains more than one token and the term liveness to designate the absence of dead-
lock. The book by David Gries [G81] is a comprehensive text on correctness proofs that no 
beginner should miss. Dijkstra [D76] introduced predicate transformers and demonstrated 
how they can be used to derive programs from scratch. Amir Pnueli introduced temporal 
logic [P77]. Manna and Pnueli’s book [MP92] contains a complete treatment of the speci-
fication and verification of concurrent systems using temporal logic. Owicki and Lamport 
[OL82] demonstrated the use of temporal logic to prove liveness properties of concurrent 
programs. In [L94], Lamport developed a complete proof system called TLA based on tem-
poral logic. Chandy and Misra developed an alternative proof system called UNITY—a 
comprehensive treatment of their work can be found in their book [CM88].

EXERCISES
5.1 Use predicate logic to represent the following:
 a.  A set B of n balls (n > 2) of which at least two balls are red and the remaining balls 

are white.
 b.  Let V define a set of points on a 2D plane. Represent the distance D between a pair 

of points (u, v) belonging to V such that the distance between them is the smallest 
of the distances between all pairs of points in V.

5.2 Consider the program for clock phase synchronization in Example 5.3. If the topol-
ogy is a cycle instead of a linear array, then will the clock phases be synchronized? 
Briefly justify your answer. Also discuss how you can generalize the solution for 
k-phase clocks (k > 2).

5.3 The following program is designed to search an element t in the integer array X:

define X: array [0..n − 1] of integers
 i, t: integer
initially i = 0
do X[i] ≠ t → i := i + 1 od

Assuming that t is indeed the value of one of the elements in the array X, define a 
well-founded set and use it to prove that the program terminates in a bounded num-
ber of steps.
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5.4 Two processes P and Q communicate with each other using locally shared variables 
p and q. Their programs are as follows:

Program P program Q
define p : boolean define q: boolean
do p = q → p := ¬p od do p ≠ q → q := ¬q od

Prove that the program does not terminate.
5.5 Consider a connected network (V, E), where each vertex v ∈ V is an unbounded clock. 

All clocks are ticking at the same rate and displaying the same value. Due to electri-
cal disturbances, one or more of these clock values might occasionally be perturbed. 
The following program synchronizes the clock values in a bounded number of steps 
following a perturbation:

{program for clock i}
Define c[i]: integer {non-negative integer representing value
 of clock i}
 {N(i) denotes the set of neighbors of clock i}
do true → c[i] := 1 + max{c[j]:j ∈ N(i) ∪ i} od

  Assume a synchronous model where all clocks simultaneously execute the aforemen-
tioned action with each clock tick and the action takes zero time to complete. Prove 
using a well-founded set and an appropriate variant function that the clocks will start 
displaying the same value in a bounded number of steps. Also, what is the round 
complexity of the algorithm?

5.6 If a distributed computation does not terminate with a strongly fair scheduler, then 
can it terminate with a weakly fair scheduler? What about the converse? Provide jus-
tification (or example) in support of your answer.

5.7 In a coffee jar, there are black and white beans of an unknown quantity. You dip your 
hands into the jar and randomly pick two beans. Then play the following game until 
the jar contains only one bean:

 a.  If both beans have the same color, then throw them away and put one black bean 
back into the jar (assume that by the side of the jar, there is an adequate supply of 
black beans).

 b.  If the two beans have different colors, then throw the black bean and return the 
white bean into the jar.

What is the color of the last bean, and how is it related to the initial content in the 
coffee jar? Furnish a proof in support of your answer.

5.8 There are two processes P and Q. P has a set of integers A, and Q has another set of 
integers B. Using message-passing model, develop a program by which processes P 
and Q exchange integers, so that eventually every element of A is greater than every 
element of B. Present a correctness proof of your program.
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5.9 Consider a bag of numbers and play the following game as long as possible.
 Pick any two numbers from this bag. If these numbers are unequal, then do noth-

ing—otherwise, increment one, decrement the other, and put them back in the bag. 
The claim is that in a bounded number of steps, no two numbers in the bag will be 
equal to one another. Can you prove this?

5.10 Consider a tree (V, E), where each node i ∈ V represents a process. Each node i has a 
color c[i] ∈ {0,1}. Starting from an arbitrary initial configuration, the nodes have to 
acquire a color such that no two neighboring nodes have the same color. We propose 
the following algorithm for each process i:

program twocolor
define c[i]: color of process i {c = 0 or 1}
do j ∈ N(i):c[i] = c[j] → c[i] := 1 − c[i] od

Assume that the scheduler is weakly fair. Will the algorithm terminate? If not, then 
explain why. Otherwise, give a proof of termination.

5.11 This is a logical continuation of the previous question. Consider that you have a 
rooted tree with a designated root. Each node (except the root) has a neighbor that is 
designated as its parent node. If j is the parent of i, then i cannot be the parent of j. 
Now try the same problem (of coloring) as in Question 10, but this time, use a differ-
ent algorithm:

program treecolor (for process i}
define c[i]: color of process i
 p[i]: parent of process i

do c[i] = c[p[i]] → c[i] := 1 − c[i] od

Assume that the scheduler is weakly fair. Will the algorithm terminate? If not, then 
explain why. Otherwise, give a proof of termination.

5.12 Consider an array of n(n > 3) processes. Starting from a terminal process, mark the 
processes alternately as even and odd. Assume that the even processes have states ∈{0, 2}, 
and the odd processes have states ∈{1, 3}. The system uses the state-reading model 
and distributed scheduling of actions. From an unknown starting state, each process 
executes the following program:

program alternator {for process i}
define s ∊{0,1,2,3}{state of a process}
do ∀j ∈ N(i):s[j] = s[i] + 1 mod 4 → s[i] := s[i] + 2 mod 4 
od

 The program will enable the processes to settle down to a steady behavior. Observe 
and summarize the steady-state behavior of the aforementioned system of processes. 
What is the maximum number of processes that can eventually execute their actions 
concurrently in the steady state? Briefly justify your answer.
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5.13 The following computation runs on a unidirectional ring of n processes 0, 1, 2, …, 
n − 1 (n > 3). Processes 0 and n − 1 are neighbors. Each process i has a local integer 
variable x[i] whose value is in the range 0.. k − 1 (k > 1).

{process 0} do x[0] ≠ x[n − 1] → x[0] := x[0] + 1 mod n od
{process i > 0} do x[i] ≠ x[i − 1] → x[i] := x[j − 1] od

Prove that the aforementioned computation will not deadlock.
5.14 In a completely connected network of processes, each process i has an integer variable 

x[i]. Initially, ∀i:x[i]=0. Each process i executes the following program:

do ∀j ∈ N(i):x[i] ≤ x[j] → x[i] := x[i] + 1
[] ∃j ∈ N(i):x[i] > x[j] → skip
od

 Prove that the safety property ∀i,j:|x[i] − x[j]| ≤ 1 holds.
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C h a p t e r  6

Time in a Distributed System

6.1 INTRODUCTION
Time is an important parameter in a distributed system. Consistency maintenance among 
replicated data relies on which update is the most recent one. Real-time systems like air-
traffic control must have accurate knowledge of time to provide useful service and avoid 
catastrophe. Important authentication services (like Kerberos) rely on synchronized 
clocks. Wireless sensor networks rely on accurately synchronized clocks to compute the 
trajectory of fast-moving objects. High-frequency trading [D09], where fast computers scan 
millions of accounts in a second and run complex algorithms for implementing various 
trading strategies in a matter of milliseconds, relies heavily on the accuracy of time syn-
chronization. Before addressing the issues related to time in distributed systems, let us 
briefly review the prevalent standards of physical time.

6.1.1 Physical Time

The notion of time and its relation to space have intrigued scientists and philosophers since 
the ancient days. According to the laws of physics and astronomy, real time is defined in 
terms of the rotation of Earth in the solar system. A solar second equals 1/86,400th part 
of a solar day, which is the amount of time that the Earth takes to complete one revolu-
tion around its own axis. This measure of time is called the real time (also known as 
Newtonian time) and is the primary standard of time. Our watches or other timekeeping 
devices are secondary standards that have to be calibrated with respect to the primary 
standard.

Modern timekeepers use atomic clocks as a de facto primary standard of time. Per this 
standard, a second is precisely the time for 9,192,631,770 orbital transitions of the cesium 
133 atom. In actual practice, there is a slight discrepancy—86,400 atomic seconds is close 
to 3 ms less than a solar day, so when the discrepancy grows to about 1 s, a leap second is 
added to the atomic clock.

International Atomic Time (TAI) is an accurate time scale that reflects the weighted 
average of the readings of nearly 300 atomic clocks in over 50 national laboratories world-
wide. It has been available since 1955 and became the international standard on which 
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UTC is based. UTC was introduced on January 1, 1972, following a decision taken by the 
14th General Conference on Weights and Measures (CGPM). The International Bureau of 
Weights and Measures is in charge of the realization of TAI.

UTC, popularly known as GMT (Greenwich Mean Time) or Zulu time, differs from the 
local time by the number of hours of your time zone. The use of a central server receiv-
ing the WWV shortwave signals from Fort Collins, Colorado, and periodically broadcast-
ing the UTC-based local time to other timekeepers is quite common. In fact, inexpensive 
clocks driven by these signals are now commercially available.

Another source of precise time is GPS. A system of 32 satellites deployed in the Earth’s 
orbit maintains accurate spatial coordinates and provides precise time reference almost 
everywhere on Earth where GPS signals can be received. Each satellite broadcasts the 
value of an onboard atomic clock. To use the GPS, a receiver must be able to receive 
signals from at least four different satellites. While the clock values from the different 
satellites help obtain the precise time, the spatial coordinates (latitude, longitude, and 
the elevation of the receiver) are computed from the distances of the satellites estimated 
by the propagation delay of the signals. The clocks on the satellites are physically moving 
at a fast pace, and per the theory of relativity, this causes the onboard clocks to run at a 
slightly slower rate than the corresponding clocks on the Earth. The cumulative delay per 
day is approximately 38 ms, which is compensated using additional circuits. The atomic 
clocks that define GPS time record the number of seconds elapsed since January 6, 1980. 
At present (i.e., in 2013), the GPS time is nearly 16 s ahead of UTC, because it does not 
use the leap second correction. Receivers thus apply a clock-correction offset (which is 
periodically transmitted along with the other data) in order to display UTC correctly and 
optionally adjust for a local time zone.

6.1.2 Sequential and Concurrent Events

Despite technological advances, the clocks commonly available at the processors distrib-
uted across a system do not exactly show the same time. Built-in atomic clocks are not yet 
cost-effective—for example, wireless sensor networks cannot (yet) afford an atomic clock at 
each sensor node, although accurate timekeeping is crucial to detecting and tracking fast-
moving objects. Certain regions in the world cannot receive such time broadcasts from reli-
able timekeeping sources. GPS signals are difficult to receive inside a building. The lack of 
a consistent notion of system-wide global time leads to several difficulties. One difficulty is 
the computation of the global state of a distributed system (defined as the set of local states 
of all processes at a given time). The special theory of relativity tells us that simultaneity 
has no absolute meaning—it is relative to the location of the observers. If the time stamps 
of a pair of events are nanoseconds apart, then we cannot convincingly say which one hap-
pened earlier, although this knowledge may be useful to establish a cause–effect relation-
ship between the events. However, causality is a basic issue in distributed computing—the 
ordering of events based on causality is more fundamental than that obtained using physi-
cal clocks. Causal order is the basis of logical clocks, introduced by Lamport [L78]. In this 
chapter, we will address how distributed systems cope with uncertainties in physical time.
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6.2 LOGICAL CLOCKS
An event corresponds to the occurrence of an action. A set of events (a, b, c, …) in a single 
process is called sequential, and their occurrences can be totally ordered in time using the 
clock at that process. For example, if Bob returns home at 5:40 p.m., answers the phone at 
5:50 p.m., and eats dinner at 6:00 p.m., then the events (return home, answer phone, eat 
dinner) define an ascending sequential order. This total order is based on a single and con-
sistent notion of time that Bob believes in accordance with his clock.

In the absence of perfectly reliable timekeepers, two different physical clocks at two 
different locations will always drift. Even if they are periodically resynchronized, some 
inaccuracy in the interim period is unavoidable. The accuracy of synchronization depends 
on clock drift as well as on the resynchronization interval. Thus, 6:00 p.m. for Bob is not 
necessarily exactly 6:00 p.m. for Alice at a different location, even if they live in the same 
time zone. Events at a single point can easily be totally ordered on the basis of their times 
of occurrences at that point. But how do we decide if an event with Bob happened before 
another event with Alice? How do we decide if two events are concurrent?

To settle such issues, we depend on an obvious law of nature: no message can be received 
before it is sent. This is an example of causality. Thus, if Bobs ends a message to Alice, then 
the event of sending the message must have happened before the event of receiving that mes-
sage regardless of the clock readings. The importance of causal relationship can be traced in 
many applications. For example, during a chat, let Bob send a message M to Carol and Alice 
and Alice post a reply Re:M back to Bob and Carol. Clearly M happened before Re:M. To 
make any sense of the chat, Carol should always receive M before Re:M. If two events are not 
causally related, then we do not care about their relative orders and call them concurrent.

The aforementioned observations lead to three basic rules about the causal ordering 
of events, and they collectively define the happened before (or the causally ordered before) 
relationship ≺ in a distributed system:

Rule 1: Let each process have a physical clock whose value is monotonically increasing. If 
a, b are two events within a single process P, and the time of occurrence of a is earlier than 
the time of occurrence of b, then a ≺ b.

Rule 2: If a is the event of sending a message by process P, and b is the event of receiving the 
same message by another process Q, then a ≺ b.

Rule 3: (a ≺ b)∧(b ≺ c) ⇒ (a ≺ c).

Figure 6.1 illustrates these rules using a space–time diagram. Here, P, Q, and R are three 
different sequential processes at three different sites. At each site, there is a separate physical 
clock, and these clocks tick at an unknown pace. The horizontal lines at each site indicate 
the passage of time. Based on the rules mentioned previously, the following results hold:

 b h b c c g g h≺ ≺ ≺ ≺since ( ) ) ( )∧( ∧

 a d a b b c c d≺ ≺ ≺ ≺since ( ) ) ( )∧( ∧
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However, it is impossible to determine any causal ordering between the events (a, e)—
neither a ≺ e holds, nor e ≺ a holds. The same thing applies to (c, f) and (b, h). In such 
a case, we call the two events concurrent (a ǁ b). It must be clear from this example that 
the events in a distributed system cannot always be totally ordered. The happened before 
relationship defines a partial order, and concurrency corresponds to the absence of causal 
ordering.

A logical clock is an event counter that respects causal ordering. Consider the sequence 
of events in a single sequential process. Each process has a counter LC that represents its 
logical clock. Initially, for every process, LC = 0. The occurrences of events correspond to 
the ticks of the logical clock local to that process. Every time an event takes place, LC is 
incremented. Logical clocks can be implemented using three simple rules:

LC1: Each time a local event takes place, increment LC by 1.

LC2: When sending a message, append the value of LC to the message.

LC3: When receiving a message, set the value of LC to 1+ max (local LC, message LC), 
where local LC is the local value of LC and message LC is the LC value appended with the 
incoming message.

The aforementioned implementation of logical clocks provides the following limited 
guarantee for a pair of events a and b:

 a b LC a LC b≺ ⇒ ( ) ( )<

However, the converse is not true. In Figure 6.1, LC(f) = 2 and LC(h) = 5, but there is no 
causal order between f and h. This is a limitation of logical clocks.

Although causality induces a partial order, in many applications, it is important to define 
a total order among events. For example, consider the server of an airline handling requests 
for reservation from geographically dispersed customers. A fair policy for the server will be 
to allocate the next seat to the customer who sent the request ahead of others. If the physi-
cal clocks are perfectly synchronized and the message propagation delay is zero, then it is 
trivial to determine the order of the requests using physical clocks. However, if the physical 
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FIGURE 6.1 A space–time view of events in a distributed system consisting of three processes 
P, Q, R: the horizontal lines indicate the timelines of the individual processes, and the diagonal lines 
represent the flow of messages between processes. Each event is tagged with its logical clock value.
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clocks are not synchronized and the message propagation delays are arbitrary, then deter-
mining a total order among the incoming requests becomes a challenge.

One way to evolve a consistent notion of total ordering across an entire distributed sys-
tem is to strengthen the notion of logical clocks. If a and b are two events in processes i and j 
(not necessarily distinct), respectively, then define total ordering (≪) as follows:

 

a b LC a LC b

LC a LC b i j

� iff either

or and

( ) ( )

( ) ( )

<

<=  

where i < j is determined either by the relative values of the numeric process identifiers or 
by the lexicographic order of their names. Whenever the logical clock values of two dis-
tinct events are equal, their process numbers or names will be used to break the tie. The 
(id, LC) value associated with an event is called its time stamp.

It should be obvious that a ≺ b ⇒ a = b. However, its converse is not necessarily true.
While the definition of causal order is quite intuitive, the definition of concurrency as 

the absence of causal order leads to tricky situations that may appear counterintuitive. For 
example, the concurrency relation is not transitive. Consider Figure 6.1 again. Here, f is 
concurrent with g, and g is concurrent with d, but f is not concurrent with d.

Even after the introduction of causal and total order, some operational aspects in 
message ordering remain unresolved. One such problem is the implementation of FIFO 
communication across a network. Let m, n be two messages sent successively by a pro-
cess P to another process R (via arbitrary routes). Here, the FIFO property implies that 
if send(m) ≺ send(n) holds, then the recipient process R must receive message m before 
receiving message n.

In Figure 6.2, P first sends the first message m directly to R and then sends the next 
message n to Q, who forwards it to R. Although send(m) ≺ send(n) holds, and each channel 
individually exhibits FIFO behavior, there is no guarantee that m will reach R before n. 
Thus, send(m) ≺ send(n) does not necessarily imply receive(m) ≺ receive(n).

This anomalous behavior can sometimes lead to difficult situations. For example, even 
if a server uses the policy of servicing requests based on time stamps, it may not always 
be able to do so, because the request bearing a smaller time stamp may not have reached 
the server before another request with a larger time stamp. At the same time, no server 
is clairvoyant—that is, it is impossible for the server R to know whether a request with 
a lower time stamp will ever arrive in future. This is an important issue in distributed 
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FIGURE 6.2 A network of three processes connected by FIFO channels.
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simulation, which requires that the temporal order of events in the simulated environ-
ment be a true reflection of the corresponding order in the real system. We will address 
this in Chapter 18.

6.3 VECTOR CLOCKS
One major weakness of logical clocks is that the LC values of two events cannot reveal 
if they are causally ordered. Vector clocks, independently discovered by Fidge [F88] and 
Mattern [M88] overcome this weakness. The primary goal of vector clocks is to detect 
causality. Let V denote the set of all events in a distributed system of n processes 0…n−1 
and A denote the set of nonnegative integer vectors of size n. Then vector clock is a map-
ping VC: V → A.

Let a, b ∊ V. Denote the ith element of VC(a) by VCi(a). Define a partial order < among 
the vector clock values as follows: VC(a) < VC(b) if and only if the following two condi-
tions hold:

 1. ∀i: 0 ≤ i ≤ n − 1: VCi(a) ≤ VCi(b)

 2. ∃j: 0 ≤ j ≤ n − 1: VCj(a) < VCj(b)

For a pair of events a, b,  if neither VC(a) < VC(b) nor VC(b) < VC(a) holds, then VC(a): 
VC(b), and the events are concurrent, that is, a ǁ b.

Since causality detection is one of the primary goals of vector clocks, its implementation 
is required to satisfy the following condition:

 a b VC a VC b≺ ⇔ <( ) ( )

To implement a system of vector clocks, each process i initializes its vector clock VC[i] to 
0, 0, 0, …, 0 (n components). Subsequently, each process follows the following three rules:

Rule 1: Each local event at process i increments the ith component of its latest vector clock 
value by 1 (i.e., VCi[i]:=VCi[i]+1).

Rule 2: The sender of a message appends the vector clock value of the send event to every 
message that it sends.

Rule 3: When process j receives a message with a vector clock value T from another process, 
it first increments the jth component of its own latest vector clock by 1 (i.e., VCj[i]:=VCj[i]+1) 
and then updates its vector clock as follows:

 ∀ ≤ ≤ − =k k n VC j T VC jk k k: :: [ ]: max( , [ ])0 1

An example is shown in Figure 6.3. The event with vector time stamp (2,1,0) is causally 
ordered before the event with the vector time stamp (2,1,4) but is concurrent with the event 
having time stamp (0,0,2).
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Although vector clocks detect causal ordering or the lack of it, a problem is their poor 
scalability. As the size of the system increases, so does the size of the clock. Consequently, 
in dynamic systems, the addition of a process requires a reorganization of the state space 
across the entire system. Even if the topology is static, for large-scale systems, the com-
munication bandwidth suffers when messages are stamped with the value of the vector 
clock. In Chapter 15, we will discuss the use of vector time stamps in solving the problem 
of causally ordered group communication.

6.4 PHYSICAL CLOCK SYNCHRONIZATION
6.4.1 Preliminary Definitions

Consider a system of n physical clocks (0, 1, 2, …, n − 1) ticking approximately at the same 
rate. Such clocks may not accurately reflect real time, and despite great care taken in build-
ing these clocks, their readings slowly drift apart over time. Therefore, these clocks need 
to be periodically resynchronized to bring the discrepancies within acceptable bounds. 
The availability of synchronized clocks simplifies many problems in distributed systems. 
Air-traffic control systems rely on accurate timekeeping to monitor flight paths and avoid 
collisions. Some security mechanisms depend on the physical times of events, so a loss of 
synchronization may be a potential security lapse. Multiversion objects need accurate time 
stamps to recognize the most recent version.

Ordinary quartz-oscillator-based clocks maintain time with an accuracy of 0.2 s/day, but 
the accuracy is affected by temperature and aging. GPS receivers can provide time with an 
accuracy of 1 ms, but they work mostly outdoors for a clear sky view. The National Institute of 
Science and Technology (NIST) radio station WWV that broadcasts from Boulder, Colorado, 
or Washington, DC, provides time information with an accuracy of 4–10 ms depending in 
the distance of the receiver. The overhead of processing these signals by a computer adds 
some more slack to the accuracy of timekeeping. This is sometimes compounded by fail-
ures and occasional unpredictability in the signal propagation delays. For reasons of conve-
nience and cost, many of these solutions are not ideal for every machine or every application. 
Accordingly, most machines try to adjust their times by periodically asking other machines. 
Three main problems have been studied in the area of physical clock synchronization:

External synchronization: The goal of external synchronization is to maintain the read-
ing of each clock as close to the UTC as possible. A time server is a machine that provides 
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Process 0
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FIGURE 6.3 Example of vector time stamps.
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accurate time information to be used as a reference by other machines. The NTP (Network 
Time Protocol) is an external synchronization protocol that runs on the Internet and coor-
dinates a number of time servers. This enables a large number of computers connected to 
the Internet to synchronize their local clocks to within a few milliseconds from the UTC. 
NTP takes appropriate recovery measures against possible failures of one or more servers 
as well as the failure of links connecting the servers.

Internal synchronization: The goal of internal synchronization is to keep the readings of 
a system of autonomous clocks closely synchronized with one another, despite the failure 
or malfunction of one or more clocks. These clock readings may not have any connec-
tion with UTC or GPS time—mutual consistency is the primary goal. Of course exter-
nal synchronization implies internal synchronization, but many applications do not need 
the extra work. For example, wireless sensor networks measure the distance between a 
source and a destination node by measuring the propagation delay of a reference signal. 
The internal clocks of the sensor nodes are ordinarily built from inexpensive oscillators. 
Accurate internal synchronization between the source and the destination clocks allows 
the application to accurately measure the propagation delay of the signal and calculate 
the distance by multiplying the propagation delay by the speed of signal. Here, external 
synchronization is unnecessary.

Phase synchronization: Many distributed computations run in phases: in a given phase, all 
processes execute some actions, which are followed by the next phase. A phase clock is an 
integer-valued variable that is incremented each time a phase completes. Each process has 
its own copy of the phase clock. In the clock phase synchronization problem, we assume 
a synchronous model where all phase clock variables are incremented in unison, as if all 
of them are driven by the same clock. Clearly, once all the phase variables are equal, they 
remain so forever, and synchronization becomes unnecessary. However, due to transient 
failures, phase clocks may occasionally differ, so that while all the nonfaulty clocks tick 
as 1,2,3,4,…, the faulty clock might tick as 6,7,8,9,… during the same time. A clock phase 
synchronization algorithm guarantees that starting from an arbitrary configuration, even-
tually the values of all the phase clocks become identical.

Bounded and unbounded clocks: A clock is bounded, when with every tick, its value c is 
incremented in a mod M field, M > 1. Such a clock has only a finite set of possible values 
(0, 1, 2, …, M − 1). After M − 1, the value of c rolls back to 0. The value of an unbounded 
clock on the other hand increases monotonically, and thus, such a clock can have an infi-
nite number of possible values.

Due to the finite space available in physical systems, only bounded clock values can be 
recorded. It may appear that by appending additional information like year and month, a 
clock reading can look unbounded. Consider Figure 6.4 for an example of a clock reading.

Even this clock will overflow in the year 10,000. Anyone familiar with the Y2K prob-
lem [Y2K] knows the potential danger of bounded clocks: as the clock value increases 
beyond M, it changes to 0 instead of M + 1, and computer systems consider the corre-
sponding event as an event from the past. As a result, many anticipated events may not 
be scheduled.
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The solution to this problem by allocating additional space for storing the clock values is 
only temporary. All that we can guarantee is that clocks will not overflow in the foreseeable 
future. A 64-bit clock that is incremented every microsecond will not overflow for nearly 
20 trillion years. However, when we discuss about fault tolerance, we will find out that a 
faulty clock can still overflow very easily and cause the old problem to resurface.

Drift rate: The maximum rate by which the value of a clock drifts from the ideal time (or 
the real time) is called the drift rate ρ. With ordinary crystal-controlled clocks, the drift 
rate is around 1 in 106. For the best atomic clocks, the drift rate is much smaller (around 
1 in 1013). A drift rate ρ guarantees that

 
( ) ( )1 1− ≤ ≤ +ρ ρdC

dt

where
C is the clock time
t represents the real time

Clock skew: The maximum difference δ between any two clocks that is allowed by an appli-
cation is called the clock skew (Figure 6.5).

Resynchronization interval: Unless driven by the same external source, physical clocks 
drift with respect to one another as well as with respect to UTC. To keep the clock readings 
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FIGURE 6.4 The clock reading when the drawing of this diagram was completed.

Cl
oc

k 
tim

e

Fast clock

Slow clock

Real time
RR

Clock skew δ

Ideal clock

Drift rate
ρ

FIGURE 6.5 The cumulative drift between two clocks drifting apart at the rate r is brought closer 
after every resynchronization interval R.
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close to one another, the clocks are periodically resynchronized. The maximum difference 
R between two consecutive synchronization actions is called the resynchronization inter-
val, and it depends on the maximum permissible clock skew in the application.

6.4.2 Clock Reading Error

In physical clock synchronization, there are some unusual sources of error that are 
specific to time-dependent variables only. Having accurate clocks is not of much value 
unless those clocks can be accurately read. Some of the sources of error in reading clocks 
are as follows:

Propagation delay: If clock i sends its reading to clock j, then the accuracy of the received 
value must depend not only on the value that was sent but also on the message propagation 
delay. Note that this is not an issue when other types of values (which are not time sensi-
tive) are sent across a channel. Even when the propagation delay due to the physical sepa-
ration between processes is negligible, the operating system at the receiving machine may 
defer the reading of the incoming clock value and thus introduce error. Ideally, we need to 
simulate a situation when a clock ticks in transit to account for these overheads. A single 
parameter ε (called the reading error) accounts for the inaccuracy.

Processing overhead: Every computation related to clock synchronization itself takes a 
finite amount of time that needs to be separately accounted for.

6.4.3 Algorithms for Internal Synchronization

Berkeley algorithm: A well-known algorithm for internal synchronization is the Berkeley 
algorithm, first used in Berkeley UNIX 4.3 BSD. The basic idea is as follows: the participat-
ing processes elect a leader that coordinates the clock synchronization. The leader pro-
cess periodically reads the clocks from all the participant processes, computes the average 
of these values, and then reports back to the participants the adjustment that needs be 
made to their local clocks, so that clock skew never exceeds the permissible limit δ. The 
algorithm assumes that the condition holds in the initial state. A participant whose clock 
reading lies outside the maximum permissible skew δ is disregarded when computing the 
average. This prevents the overall system time from being unfavorably skewed due to one 
or more erroneous clocks. Figure 6.6 shows an example. The rationale behind sending 
the needed correction instead of the computed average value is that the absolute value is 
influenced by the propagation delay, whereas the needed correction hardly changes during 
the signal propagation time. One note of caution: the adjustments are to be applied to the 
clocks in such a way that the monotonicity property of clocks is not violated. Thus, negative 
corrections will be implemented via a slowdown of the clock, whereas positive corrections 
will be implemented via an appropriate speedup.

The algorithm handles the case where the notion of faults may be a relative one: for 
example, there may be two disjoint sets of clocks, and in each set, the clocks are synchro-
nized with one another, but no clock in one set is synchronized with any other clock in the 
second set. Here, to every clock in one set, the clocks in the other set are faulty. The final 
outcome is determined by the choice of the leader process.
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Lamport and Melliar–Smith’s algorithm: This algorithm is an adaptation of the Berkeley 
algorithm, with some extra features. It not only handles faulty clocks but also handles 
two-faced clocks, an extreme form of faulty behavior, in which two nonfaulty clocks obtain 
conflicting readings from the same faulty clock.* The algorithm assumes that the clocks 
are initially synchronized and that they are resynchronized often enough so that no two 
nonfaulty process clocks ever differ by more than δ. For the sake of simplicity, disregard 
the overhead due to propagation delay or computation overhead and consider clock read-
ing to be an instantaneous action. Let ck[i] denote clock i’s reading of clock k’s value. Each 
clock i repeatedly executes the following three steps:

Step 1: Reads the value of every clock in the system.

Step 2: Discards outliers and substitutes them by the value of the local clock. Thus, if 
|ci[i] − cj[i]| > δ, then cj[i]: = ci[i].

Step 3: Updates the clock reading using the average of these values.

The aforementioned algorithm guarantees that in a system of n processes, the clocks 
remain synchronized even if there are at most t two-faced clocks, when n > 3t. To verify 
this, consider two distinct nonfaulty clocks i and j reading a third clock k. Two cases are 
possible:

Case 1: If clock k is nonfaulty, then ck[i] = ck[j].

Case 2: If clock k is faulty, then they can produce any reading. However, a faulty clock can 
make other clocks accept their readings as good values even if they transmit erroneous 
readings that are at most 3δ apart. Figure 6.7 illustrates such a scenario.

* Such a possibility is not a fantasy—it has been observed in real situations.
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FIGURE 6.6 The readings of the clocks (a) before and (b) after one round of the Berkeley algo-
rithm: A is the leader, and C is an outlier whose value lies outside the permissible limit of 0:00:06 
chosen for this system.
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The following values constitute a feasible set of readings acceptable to every clock:

• ci[i] = c

• ck[i] = c + δ

• cj[j] = c − δ

• ck[j] = c − 2δ

Now assume that at most t out of the n clocks are faulty, and the remaining clocks are 
nonfaulty. Then, the maximum difference between the averages computed by any two non-
faulty processes is 3tδ/n. If n > 3t, then (3tδ/n) < δ, which means that the algorithm keeps 
c[i] and c[j] within the permissible skew δ and the nonfaulty clocks remain synchronized.

How often do we need to run the aforementioned algorithm? To maintain synchrony, 
the resynchronization interval R should be small enough so that the cumulative drift does 
not offset the convergence achieved after each round of synchronization. A sample calcula-
tion is shown in the following:

As a result of the synchronization, the maximum difference between two nonfaulty 
clocks is reduced from δ to 3tδ/n. Let n = 3t + 1. Then the amount of correction is

 
δ δ δ−
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If ρ is the maximum rate at which two clocks drift apart, then it will take a time 
≤ δ/(ρ ⋅ (3t + 1)) before their difference grows to δ again and resynchronization becomes 
necessary. By definition, this is the upper bound of the resynchronization interval R. 
Therefore, R ≤ δ/(ρ ⋅ (3t + 1)). If the resynchronization interval increases, then the system 
must be designed to tolerate a larger clock skew.

6.4.4 Algorithms for External Synchronization

Cristian’s method: In this method, a client obtains the data from a special host (called the 
time server) that contains the reference time obtained from some precise external source. 
Cristian’s algorithm compensates for the clock reading error. The client sends requests to 
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FIGURE 6.7 Two nonfaulty clocks i and j reading the value of a faulty clock k.
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the time server every R units of time where R < δ/2ρ (this follows from the fact that in an 
interval Δt, two perfectly synchronized clocks can be 2 · Δt · ρ apart and 2 · ρ · R ≤ δ), and the 
server sends a response back to the client with the current time. For an accurate estimate 
of the current time, the client needs to estimate how long it has been since the time server 
replied. This is done by assuming that the client’s clock is reasonably accurate over short 
intervals and that the latency of the link is approximately symmetric (the request takes as 
long to get to the server as the reply takes to get back). Given these assumptions, the client 
issues an RPC to measure the round-trip time (RTT = T2 − T1; see Figure 6.8) of the request 
using its local clock and then divide it by half (trajectory 2 of Figure 6.8) to estimate the 
propagation delay. As a result, if clock i receives the value TS from the time server, then c[i] 
corrects itself to T RTT T T TS S+ ( ) = + −( )( )2 22 1 .

However, this assumption about symmetric delays may not be realistic, and congestion 
in the network can increase these delays in one or both directions in unpredictable ways, 
leaving room for uncertainty in the calibration. To estimate this, let min be the minimum 
transit time in each direction. Two extreme possibilities are shown as cases 1 and 3 in 
Figure 6.8—for the same values of (T1, T2), the server may report any value in the interval 

′ ′′[ ]T TS S, . The length of this interval is (T2 − T1 − 2 min). Accordingly, the accuracy of the 
client clock is limited to ± −( )( ) −( )T T2 1 2 min . The zone of uncertainty can be further 
reduced using repeated measurements of T1 and T2 and using the smallest of the measured 
intervals, which leads to a tighter estimate of the true server time. Synchronizing the clock 
from multiple time servers helps improve the accuracy and overcome server failures.

Network Time Protocol: NTP is an elaborate external synchronization mechanism designed 
to synchronize clocks on the Internet with the UTC. It is not practical to equip every com-
puter with atomic clocks or GPS satellite receivers. Cost is a major factor. So, these comput-
ers use the NTP to synchronize the clocks. The time servers are located at different sites on 
the Internet. NTP architecture is a tiered structure of clocks, whose accuracy decreases as its 
level (defined by a stratum number) increases. In stratum 0, there are primary time servers 
that are devices of the highest precision, like cesium clocks or GPS-based clocks. The stra-
tum 0  clocks are directly connected to the computers in the next level (i.e., stratum 1). 
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FIGURE 6.8 An illustration of Christian’s algorithm for external synchronization: three different 
possibilities are shown.
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The stratum 1 computers act as time servers for the computers belonging to the next level 
(i.e., stratum 2). In general, stratum i computers act as time servers for the stratum (i + 1) 
computers. NTP synchronizes clocks on the Internet despite occasional loss of connectiv-
ity, failure of some of the time servers, and malicious timing inputs from untrusted sources. 
Figure 6.9 shows the hierarchy with three stratum 0 nodes.

A computer will try to synchronize its clock with several servers and accept the best 
results to set its time. Accordingly, the synchronization subnet is dynamic. The quality 
of a time service depends on several factors, like the stratum of the server, the round-trip 
delay, and the consistency of the network transit times. In a sense, NTP is a refinement of 
Cristian’s method. NTP provides time service using the following three mechanisms:

Multicasting: The time server periodically multicasts the current time to the client 
machines. All messages are delivered via UDP. This is the simplest method and perhaps 
the least accurate. The readings are not compensated for signal delays.

Procedure call: The client processes send requests to the time server, and the server responds 
by providing the current time. Using Cristian’s method, each client can compensate for the 
propagation delay by using an estimate of the round-trip delay. The resulting accuracy is 
better than that obtained using multicasting.

P2P communication: NTP allows a time server to synchronize its clock with another time 
server operating at the same stratum. The P2P mode is used by master servers at lower 
strata, and it enables them to provide a more accurate time service to the client computers. 
This leads to the highest accuracy compared to the previous two methods.

As an example of this mode, consider the exchange of a pair of messages between two 
time servers P and Q as shown Figure 6.10. Server P sends a probe at time T1, which is 
received by server Q at its local time T2. Server Q responds to this query at its local time T3, 
which is received by server P at its local time T4. Define the offset between two servers P and 
Q as the difference between their clock values. Let TPQ and TQP be the message propagation 
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Stratum 1

Stratum 2

Stratum 3

FIGURE 6.9 A network of time servers used in NTP. The top-level devices (stratum 0) have the 
highest precision.
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delays from P to Q and Q to P, respectively. Without loss of generality, assume that server 
Q’s time is ahead of server P’s time by an offset δ. Then

 T T TPQ2 1= + + δ  (6.1)

 T T TQP4 3= + − δ  (6.2)

Adding (6.1) and (6.2),

 T T T T T TPQ QP2 4 1 3+ = + + +( )

So, the round-trip delay

 T T T T T TPQ QP+ = + − −2 4 1 3  (6.3)

Subtracting (6.2) from (6.1),

 2 2 4 1 3δ = − − +( ) − −( )T T T T T TPQ QP

Therefore, the offset

 
δ = − − + − −T T T T T TPQ QP2 4 1 3

2 2
 (6.4)

Assume that x = (T2−T4−T1+T3)/2 and the round-trip delay y = TPQ + TQP. Since TPQ > 0 and 
TQP > 0, the value of (TPQ − TQP) must lie between +y and −y. Therefore, the actual offset δ must 
lie in the range [x + (y/2), x − (y/2)]. Note that TPQ and TQP are not individually measurable, but 
x and y can be calculated from the values of (T1, T2, T3, T4). Therefore, if each server bounces 
messages back and forth with another server and computes several pairs of (x, y), then a good 
approximation of the real offset δ can be obtained from that pair in which the round-trip delay 
y is the smallest, since that will minimize the dispersion in the window [x + (y/2), x − (y/2)].

The multicast mode of communication is considered adequate for a large number 
of applications. When the accuracy from the multicast mode becomes inadequate, the 
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FIGURE 6.10 The exchange of messages between two time servers.
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procedure call mode is used. An example is a file server on a LAN that wants to keep 
track of when a file was created (by communicating with a time server at a higher level, 
i.e., a lower-level number). Finally, the P2P mode is used only with the higher-level time 
servers (stratum 1) for achieving the best possible accuracy. The synchronization subnet 
reconfigures itself when some servers fail or become unreachable. NTP can synchronize 
clocks within an accuracy of 1–50 ms.

6.5 CONCLUDING REMARKS
In asynchronous distributed systems, absolute physical time is not important, but the 
temporal order of events is significant for some applications. As an example, in repli-
cated servers, each server is a state machine whose state is modified by the inputs from its 
 clients. In order that all replicas always remain in the same state (so that one can seam-
lessly switch to a different server if one crashes), all replicas must receive the inputs from 
clients in the same order.

The performance of a clock synchronization algorithm is determined by how close two 
distinct clock times can be brought, the time of convergence, and the nature of failures 
tolerated by such algorithms. The adjustment of clock values may have interesting side 
effects. For example, if a clock is advanced from 171 to 174 during an adjustment, then the 
time instants 172 and 173 are lost. This will affect potential events scheduled at these times. 
On the other hand, if the clock is turned back from 171 to 169 during adjustment, then the 
time instants 169 through 171 appear twice. This causes the anomaly that an event at time 
170 happens before another event at time 169! A simple fix for such problems is to appropri-
ately speed up or slow down the clock for an appropriate number of ticks (until one catches 
up with the other) without violating the clock monotonicity property, instead of abruptly 
turning the clock forward or backward.

6.6 BIBLIOGRAPHIC NOTES
Lamport [L78] introduced logical clocks. In the year 2000, the distributed systems com-
munity adjudged this paper as the most influential paper in the field of distributed systems 
(later renamed as Dijkstra Prize after Edsger W. Dijkstra since 2003). In [M88], Mattern 
[M88] and Fidge [F88] independently proposed vector clocks. Gusella and Zatti [GZ89] 
developed the Berkeley algorithm for internal synchronization in 1989. The averaging 
algorithm for physical clock synchronization is the first of the three algorithms proposed 
by Lamport and Melliar-Smith in [LM85]. Cristian’s algorithm is based on his work [C89]. 
David Mills designed the NTP, and a good introduction can be found in [M91].

EXERCISES
6.1 In a system of clocks, the maximum clock drift is 1 in 106. (a) What can be the maxi-

mum difference between the readings of the two clocks 24 h after they have been 
synchronized? (b) What should be the resynchronization interval, so that the skew 
does not exceed 20 ms?

6.2 Figure 6.11 shows the communication between a pair of processes P and Q. Calculate 
the logical clock values of the events a − j.
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6.3 Calculate the vector clock values of the events a − j in Figure 6.11. Use these vec-
tor clock values to prove that (d, h) are concurrent events, but f is causally ordered 
before e.

6.4 a, b, c are three events in a distributed system, and no two events belong to the same 
process. Using Lamport’s definition of sequential and concurrent events, comment 
on the truth of the following statements:

 a. (a||b)∧(b ≺ c)⇒(a ≺ c)
 b. (a||b)∧(b||c)⇒(a||c)

(Here, a||b denotes that a, b are concurrent events.)
6.5 Vector clocks are convenient for identifying concurrent as well as causally ordered 

events. However, scalability is a problem, since the size of the clock grows linearly 
with the number of processes n. Is it possible to detect causality (or concurrency) 
using vector clocks of size smaller than n? Justify your answer.

6.6 Lamport and Melliar–Smith’s algorithm for the internal synchronization of physical 
clocks safeguards against two-faced clocks. What kind of failures or problems can 
cause clocks to behave in such a strange manner? List the possible causes.

6.7 The averaging algorithm proposed by Lamport et al. works for a completely con-
nected network of clocks. Will such an averaging algorithm for clock synchroniza-
tion work on a cycle of n clocks, of which m can exhibit two-faced behavior and n > 3m? 
Assume that each link in the cycle allows bidirectional communication.

6.8 A limitation of time stamps is their unbounded size, since finite resources are inad-
equate to store or process them. The goal of this exercise is to explore if bounded-
size time stamps can be used in specific solutions. Explore this possibility in the 
following scenario: Two processes (0, 1) compete with each other to acquire a 
shared resource that can be used by one process at a time. The life of the processes 
is as follows:

Program for process i ∈ {0,1}
do true →

Request for a resource;
Acquire and use the resource;
Release the resource

od

P

Q

a b c d e

f g h i j
Time

Time

FIGURE 6.11 A sample communication between processes P and Q.
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To request the resource, a process sends a time stamp request to the other process, 
which grants the request only if (1) it is not interested in the resource at that moment 
or (2) its own time stamp for resource request is larger than the time stamp of the 
incoming request. In all other situations, the grant is deferred. After receiving the 
grant, a process acquires the resource. Once a process acquires a resource, it guaran-
tees to release the resource within a finite amount of time. Thereafter, in a finite time, 
the resource is released.

Can you solve the problem using time stamps of bounded size? Explain your answer. 
(Hint: First find out what is the maximum difference between the time stamps of the 
two processes if the time stamps are unbounded. The time stamp of bounded size 
must resolve the order of requests without any ambiguity.)

6.9 (Sequential time stamp assignment) There are n processes that are initially passive. 
At any time, a process may want to be active and execute an action, for which it has 
to acquire a time stamp that is larger than the time stamp of the remaining n − 1 
processes. An allocator process will allocate a time stamp and can service one request 
for a new time stamp at any time.

The goal is to use time stamps of bounded size. The scenario can be viewed as a 
game between an adversary and the allocator: the adversary will identify a process 
that will request for a time stamp, and the allocator has to assign the time stamp to 
that process. For example, if n = 2, then a solution exists with time stamps 0, 1, 2, 
where ts(i) = ts(j) + 1 mod 3 implies that the time stamp (ts) of process i is larger than 
the time stamp of process j. Verify if this is true.

Can you find an algorithm for assigning bounded time stamps for arbitrary 
values of n?

6.10 An anonymous network is one in which processes do not have identifiers. Can you 
define a total order among events in an anonymous network of processes?

6.11 Five processes 0, 1, 2, 3, 4 in a completely connected network decide to maintain a 
distributed bulletin board. No central version of it physically exists, but every pro-
cess maintains an image of it. To post a new bulletin, each process multicasts every 
message to the other four processes, and recipient processes willing to respond to 
an incoming message multicast their responses in a similar manner. To make any 
sense from a response, every process must accept every message and response in 
causal order, so a process receiving a message will postpone its acceptance unless 
it is confident that no other message causally ordered before this one will arrive 
in future.

To detect causality, the implementation uses vector clocks. Each message or 
response is tagged with an appropriate vector time stamp. Figure out (a) a rule 
for assigning these vector time stamps and (b) the corresponding algorithm using 
which a process will decide whether to accept a message immediately or postpone 
its acceptance. 
(Hint: You may modify the scheme for assigning the vector time stamps.)
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6.12 Describe an application in which the lack of synchronization among physical clocks 
can lead to a security breach.

6.13 In a network of n processes (n > 2), all channels are FIFO and of infinite capacity. 
Every process is required to accept messages from the other processes in strictly 
increasing order of time stamps. You can assume that (1) processes send messages 
infinitely often and (2) no message is lost in transit. Suggest an implementation to 
make it possible. 
(Hint: Consider using null messages through a channel to signal the absence of a 
message from a sender.)
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C h a p t e r  7

Mutual Exclusion

7.1 INTRODUCTION
Mutual exclusion is a fundamental problem in concurrent programming and has been 
extensively studied under different contexts. Imagine that n users (n > 1) want to print 
data on a shared printer infinitely often. Since at most one user can print at any time, 
there should be a protocol for the fair sharing of that printer. As another example, con-
sider a network of processes, where each process has a copy of a shared file F. To be con-
sistent, all copies of F must be identical, regardless of how individual processes perform 
their read or write operations. Simultaneous updates of the local copies will violate the 
consistency of F. A simple way to achieve this is to give each process exclusive write access 
to its local copy of F during write operations and propagate all updates to the various 
local copies of F with the other processes, before any other process starts accessing its 
local copy. This shows the importance of studying the mutual exclusion problem. The 
problem can be generalized to the access of any shared resource on a network of pro-
cesses. In multiprocessor cache coherence, at most one process has the right to update 
a shared variable. A well-known implementation of mutual exclusion is found in the 
CSMA/CD protocol used to resolve bus contention in Ethernets.

Most of the classical solutions to the mutual exclusion problem have been studied 
for shared-memory systems with read–write atomicity. In this chapter, we will examine 
both shared-memory and message-passing solutions. We begin with message-passing 
solutions.

7.2 SOLUTIONS ON MESSAGE-PASSING SYSTEMS
In the message-passing model of a distributed system, the mutual exclusion problem 
can be formulated as follows: Consider n(n > 1) processes, numbered 0.. n − 1 form-
ing a distributed system. The topology is a completely connected graph, so that every 
process can directly communicate with every other process in the system. Each process 
periodically wants to enter a CS, executes the CS codes, and eventually exits the CS to 
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do the rest of its work. The problem is to devise a protocol that satisfies the following 
three conditions:

ME1: [Mutual exclusion] At most, one process can remain in its CS at any time. This is 
a safety property.

ME2: [Freedom from deadlock] In every configuration, at least one process must be eli-
gible to take an action and enter its CS. This is also a safety property.

ME3: [Progress] Every process trying to enter its CS must eventually succeed. This is a 
liveness property.

The violation of ME3 is known as livelock or starvation. In such a case, one or more 
processes may be prevented from entering their CSs for an indefinite period by other 
processes.

A measure of fairness is the criterion of bounded waiting. Let process i try to enter its CS. 
Then, the bounded waiting requirement specifies an upper bound on the number of times 
other contending processes may enter their CSs between two consecutive CS entries by 
process i. Most message-passing solutions implement FIFO fairness, where processes are 
admitted to their CS in the ascending order of their request time stamps. It is customary to 
assume that every process entering its CS eventually exits the CS—thus, process failure or 
deadlock within the CS is totally ruled out.

Many practical solutions to this problem rely on the existence of a central coordinator 
that acts as a manager of the CSs. This coordinator can be an extra process or one of the 
n processes in the system that has been assigned additional responsibilities. Any process 
trying to enter its CS sends a request to the coordinator and waits for the ack message from 
the coordinator, which is an approval for entering the CS. Similarly, any process willing to 
exit its CS sends out a release message. The coordinator monitors the status of the processes 
and decides when to send the ack to a certain process.

While such a solution is quite intuitive and criteria ME1, ME2, and ME3 can be eas-
ily satisfied, it is neither easy nor obvious how to implement FIFO fairness. To realize 
this, consider that process i sends a request x for entry into its CS and then sends a 
message m to process j. Process j, after receiving m, sends a request y for entry into its CS. 
Therefore x ≺ y. However, even if the channels are FIFO, request x may not reach the 
coordinator before request y. Furthermore, if y reaches the coordinator first, then there 
is no way that the coordinator can anticipate the arrival of another request x with a 
lower time stamp.

In this chapter, we disregard centralized solutions using coordinators and present only 
decentralized algorithms, where every process has equal responsibility in the implementa-
tion of mutual exclusion.

7.2.1 Lamport’s Solution

The first published solution to this problem is due to Lamport. It works on a completely 
connected network and assumes that interprocess communication channels are FIFO. 
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Each process maintains its own private request-queue Q. The algorithm is described by the 
following five rules:

LA1: To request entry into its CS, a process sends a time-stamped request to every other 
process in the system and also enters the request in its local Q.

LA2: When a process receives a request, it places it in its Q. If the process is not in its CS, 
then it sends a time-stamped ack to the sender. Otherwise, it defers the sending of the 
ack until its exit from the CS.

LA3: A process enters its CS, when (1) its request is ordered ahead of all other requests 
(i.e., the time stamp of its own request is less than the time stamps of all other requests) 
in its local Q and (2) it has received the acks from every other process in response to 
its current request.

LA4: To exit from the CS, a process (1) deletes the request from its local queue and 
(2) sends a time-stamped release message to all the other processes.

LA5: When a process receives a release message, it removes the corresponding request 
from its local queue.

Correctness proof: To prove correctness, we need to show that the program satisfies prop-
erties ME1–ME3.

Proof of ME1 (by contradiction): Let two different processes i and j enter their CSs at the 
same time. Since both processes received all the acks, both i and j must have received 
each other’s requests and entered them in their local queues. If process i enters its CS, then 
Q.i.ts < Q.j.ts, and if j enters its CS, then Q.i.ts > Q.j.ts. Both of these cannot be true at the 
same time. Therefore, both i and j cannot enter their CSs at the same time.  ◾

Proofs of ME2 and ME3 (by induction): Since every request sent out by a process i is 
acknowledged and no message is lost, every process eventually receives (n − 1) ack sig-
nals. Our proof is based on the number of processes that are ahead of process i in its 
request queue.

Basis: When process i makes a request, there may be at most (n − 1) processes ahead of 
process i in its request queue.

Inductive step: Assume that there are K (1 ≤ K ≤ n − 1) processes ahead of process i in its 
request queue. In a finite time, process j with the lowest time stamp (1) enters CS, (2) exits 
CS, and (3) sends out the release message to every other process including i. Process i then 
deletes the entry for process j, and the number of processes ahead of process i is reduced 
from K to K − 1. Subsequent requests from process j must be placed behind that of process i, 
since the time stamp of such requests is greater than that of i. It thus follows that in a 
bounded number of steps, the number of processes ahead of process i will be reduced to 0, 
and process i will enter its CS.  ◾
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Proof of FIFO fairness (by contradiction): Let the time stamp of the request from process i 
be less than the time stamp of the request from process j. Assume that process j enters 
its CS before process i does so. This implies that when process j enters its CS, it has not 
received the request from process i. However, according to LA3, it must have received the 
ack of its own request from process i. By assumption, the channels are FIFO—so ack 
of j ’s request from i must be ahead of the request from i. However, no request can be 
acknowledged before it is received. So, request from j ≺ ack of j’s request from i. It thus 
follows that request from j ≺ request from i, which contradicts our earlier assumption. 
Therefore, process i must enter its CS before process j.  ◾

Observe that when all requests are acknowledged, the request queue of every process is 
identical—so the decision to enter CS is based on local information that is globally consis-
tent. Also, broadcasts are atomic—so all request messages bear the same time stamp and are 
transmitted without interruption. It leads to unnecessary complications if this view is over-
looked, and each request message from one process to another is assumed to have different 
(i.e., progressively increasing) time stamps, or the broadcast is interrupted prematurely.

The message complexity is the number of messages required to complete one round 
trip (i.e., both entry and exit) to the CS. Each process sends (n − 1) request messages and 
receives (n − 1) acks to enter its CS. Furthermore, (n − 1) release messages are sent as part 
of the exit protocol. Thus, the total number of messages required to complete one round 
trip to the CS is 3(n − 1).

7.2.2 Ricart–Agrawala’s Solution

Ricart and Agrawala proposed an improvement over Lamport’s solution to the distributed 
mutual exclusion problem. Unlike Lamport’s algorithm, processes do not maintain local 
queues—instead, each process counts the number of acks that it receives from other processes, 
which determines whether it will enter its CS. Four rules form the basis of this algorithm:

RA1: Each process seeking entry into its CS sends a time-stamped request to every other 
process in the system.

RA2: A process receiving a request sends an ack back to the sender, only when (1) the process 
is not interested in entering its CS or (2) the process is trying to enter its CS, but its time 
stamp is larger than that of the sender. If the process is already in its CS or its timestamp 
is smaller than that of the sender, then it will buffer all requests until its exit from CS.

RA3: A process enters its CS, when it receives an ack from each of the remaining (n − 1) 
processes.

RA4: Upon exit from its CS, a process must send ack to each of the pending requests 
before making a new request or executing other actions.

Intuitively, a process is allowed to enter its CS, only when it receives a go-ahead signal 
from every other process, since either these processes are not competing for entry into the 
CS or their requests bear a higher time stamp.
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Proof of ME1: Two processes i and j can enter their CSs at the same time, only if both 
receive (n − 1) acks. However, per RA2, both i and j cannot send acks to each other, so both 
cannot receive (n − 1) acks and thus cannot be in their respective CS at the same time. ◾

Proof of ME2 and ME3: Draw a directed graph G with the processes as nodes. Add an 
edge from node i to node j if j is already in its CS or j’s request has a lower time stamp com-
pared to i’s request. Clearly, G is an acyclic graph. A process i trying to enter its CS is kept 
waiting, if there exists at least one other process j such that an edge i → j exists and j will 
not send an ack to i until it completes its CS. Per RA3, the process represented by the node 
with out-degree 0 will receive all acks and enter its CS (unless it is already in its CS). Upon 
exit from its CS, it will send an ack to each of the waiting processes, which will decrement 
their out-degrees by 1 (RA4). Therefore, the waiting processes will enter their CSs in the 
order defined by their out-degrees. Deadlock is ruled out since G is acyclic, and every wait-
ing process will enter its CS in a bounded number of steps. ◾

Proof of FIFO fairness: It follows from the proof of ME2 and ME3. If the time stamp of 
the request from i < the time stamp of the request from j, then i has a smaller out-degree 
than j in the directed acyclic graph G. Therefore, i will enter its CS before j does. This proves 
progress as well as FIFO fairness. ◾

Unlike Lamport’s algorithm that explicitly creates consistent explicit local queues, 
Ricart and Agrawala’s algorithm implicitly creates an acyclic wait-for chain of processes 
i → j → k →⋯ where each process waits for the other processes ahead of it to send an ack. 
Note that this algorithm does not require the channels to be FIFO.

To compute the message complexity, note that each process sends (n − 1) requests and 
receives (n − 1) acks to complete one trip to its CS. Therefore, the total number of messages 
sent by a process to complete one trip into its CS is 2(n − 1). This is less than what was 
needed in Lamport’s algorithm.

7.2.3 Maekawa’s Solution

In 1985, Maekawa extended Ricart and Agrawala’s algorithm and suggested the first solu-
tion to the n-process distributed mutual exclusion problem with a message complexity 
lower than O(n) per process. The underlying principle is based on the theory of finite pro-
jective planes. As a clear deviation from the strategies adopted in the previous two algo-
rithms, here, a process i is required to send request messages only to a subset Si of the 
processes in the system, and the receipt of acks from each of the processes in this subset Si 
is sufficient to allow that process to enter its CS.

Maekawa divides the processes into a number of subsets of identical size K. Each process i is 
associated with a unique subset Si. The subsets satisfy the following three properties:

 1. ∀i, j:0 ≤ i ≤ n − 1::Si ∩ Sj ≠ ∅
  Whenever a pair of processes i and j wants to enter their respective CSs, a process in 

Si ∩ Sj takes up the role of an arbitrator and chooses only one of them by sending ack 
and defers the other one.
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 2. i ∈ Si. It is only natural that a process gets an ack from itself for entering the CS. Note 
that this does not cost a message.

 3. Every process i is present in the same number (D) of subsets. The fact that every 
node acts as an arbitrator for the same number of processes adds to the symmetry 
of the system.

As an example, consider the table earlier showing the partition for seven processes num-
bered 0..6. Here, each set has a size K = 3, and each process is included in D = 3 subsets. 
The relationship D = K is not essential, but we will soon find out that it helps in reducing 
the message complexity of the system. In the following, we present the first version of 
Maekawa’s algorithm (call it maekawa1) that uses five basic rules:

MA1: To enter its CS, a process i first sends a time-stamped request message to every 
process in Si.

MA2: A process receiving requests sends an ack to that process whose request has the 
lowest time stamp if it is outside its CS. It locks itself to that process and keeps all 
other requests waiting in a request queue. If the receiving process is inside its CS, 
then it defers this action until it leaves its CS.

MA3: A process i enters its CS when it receives acks from every member of Si.

MA4: During exit from its CS, a process sends release messages to all members of Si.

MA5: Upon receiving a release message from process i, a process unlocks itself, deletes 
the current request, and sends an ack to the process whose request has the lowest time 
stamp.

Proof of ME1 (by contradiction): Assume that the statement is false and two processes 
i and j (i ≠ j) enter their CSs at the same time. For this to happen, every member of Si 
must have received the request from i, and every member of Sj must have received the 
request from j. Since Si ∩ Sj ≠ ∅, there is a process k ∈ Si ∩ Sj that received requests from 
both i and j. Per MA2, process k will send ack to only one of them and refrain from 
sending the ack to the other, until the first process has sent a release signal. Since a pro-
cess needs an ack from every member of its subset, both i and j cannot enter their CSs 
at the same time.  ◾

S0 = {0, 1, 2}
S1 = {1, 3, 5}
S2 = {2, 4, 5}
S3 = {0, 3, 4}
S4 = {1, 4, 6}
S5 = {0, 5, 6}
S6 = {2, 3, 6}
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The proposed algorithm maekawa1, however, does not satisfy the safety property ME2, 
since there is a potential for deadlock. The source of the problem is that no process is clair-
voyant—so when a process receives a request, it does not know whether another request with 
a lower time stamp is on its way. Here is an example. Assume that processes 0, 1, and 2 have 
sent request to the members of S0, S1, and S2, respectively. The following scenario is possible:

• From S0 = {0, 1, 2}, processes 0 and 2 send ack to 0, but process 1 sends ack to 1.

• From S1 = {1, 3, 5}, processes 1 and 3 send ack to 1, but process 5 sends ack to 2.

• Prom S2 = {2, 4, 5}, processes 4 and 5 send ack to 2, but process 2 sends ack to 0.

Thus, 0 waits for* 1, 1 waits for 2, and 2 waits for 0. This circular waiting causes deadlock.
There are two possible ways of avoiding a deadlock. The first is to assume a system-wide 

order of message propagation, as explained in the following:

(Global FIFO) Every process receives incoming messages in strictly increasing order of 
time stamps.

We now demonstrate that if the global FIFO property holds, then algorithm maekawa1 
is deadlock-free and satisfies the FIFO fairness requirement.

Proof of ME2 and ME3 (by induction)
Basis: Consider a process i whose request bears the lowest time stamp, and assume that no 
process is currently in its CS. Because of the global FIFO assumption, every process in Si 
must receive the request from process i before any other request with a higher time stamp. 
Therefore, process i will receive ack from every process in Si and will enter its CS.

Induction step: Assume that a process m is already in its CS and the request from process j 
has the lowest time stamp among all the waiting processes. We show that process j eventu-
ally receives acks from every process in Sj and proceeds to its CS.

Because of the global FIFO assumption, request from process j is received by every pro-
cess in Sj before any other request with a higher time stamp and ordered ahead of every 
other process seeking entry into the CS. Therefore, when process m exits the CS and sends 
release signals to every process in Sm, every process in Sm ∩ Sj sends ack to process j. In 
addition, every process in (¬Sm ∩ Sj) has already sent acks to process j since the request 
from process j is at the head of the local queues of these processes. Therefore, process j 
eventually receives acks from every process in Sj.

This shows that after process m exits the CS, process j whose request bears the next 
higher time stamp eventually enters the CS. It therefore follows that every process sending 
a request eventually enters the CS.

The global FIFO property however neither holds in practice nor is easy to implement. 
Therefore, Maekawa presented a modified version of his first algorithm (call it maekawa2) 

* Here “i waits for j” means that process i waits for process j to send a release message.
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that does not deadlock. This version uses three additional signals: failed, inquire, and relin-
quish. The outline of the modified version is as follows:

MA1′: To enter its CS, a process i sends a time-stamped request message to every process 
in Si {same as MA1}.

MA2′: A process receiving a request can take one of the following three steps when it is 
outside its CS:

• If lock has not yet been set, then the process sends an ack to the requesting pro-
cess with the lowest time stamp and sets its own lock to the id of that process.

• If lock is already set and the time stamp of the incoming request is higher than 
the time stamp of the locked request, then the incoming request is enqueued and 
a failed message is sent to the sender.

• If lock is already set, but the time stamp of the incoming request is lower than that 
of the locked request, then the incoming request is queued, and an inquire mes-
sage is sent to the sender of the locking request. This message is meant to check 
the current status of the process whose request set the lock.

MA3′: When a requesting process i receives acks from every member of Si, it enters its CS. 
However, if it receives an inquire message, it checks whether it can go ahead. If it has 
already received or subsequently receives at least one failed message, it knows that it 
cannot go ahead—so it sends a relinquish message back to the members of Si, indicat-
ing that it wants to give up. Otherwise, it ignores the inquire message.

MA4′: During exit from CS, process i sends release messages to each member of Si (same 
as MA4).

MA5′: Upon receiving a release message, a process deletes the currently locked request 
from its queue. If the queue is not empty, then it also sends an ack to the process with 
the lowest time stamp; otherwise, it resets the lock (same as MA5).

MA6′: Upon receiving a relinquish message, the process sends ack to the waiting process 
with the lowest time stamp (but does not delete the current request from its queue) 
and sets its lock appropriately.

The same partial correctness proof is applicable to the modified algorithm also. Here is 
an informal argument about the absence of deadlock.

Assume that there is a deadlock involving k processes 0, 1, 2, …, k − 1. Without loss of 
generality, we assume that process i waits for process (i + 1) mod k. Let the request from 
process j bear the lowest time stamp. This means that process j cannot receive a failed mes-
sage from any process in Sj. Since process j waits for process (j + 1) mod k, there must exist a 
process m ∈ (Si ∩ Sj + 1) that has set its lock to (j + 1) mod k instead of j. When process m later 
receives the request from process j, it sends an inquire message to process (j + 1) mod k, 
which eventually replies with either a relinquish or a release message. In either case, every 
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process belonging to (Sj ∩ Sj+1) eventually locks itself to process j and sends ack to process j. 
As a result, the condition “process j waits for (j + 1) mod k” ceases to hold, and the deadlock 
is avoided (Figure 7.1).*  ◾

Message complexity: Let K be the cardinality of each subset Si. In the first algorithm 
maekawa1, each process (1) sends K request messages, (2) receives K acks, and (3) sends K 
release messages. When D = K, the relationship between n and K is n = K(K − 1) + 1. A good 
approximation is K n= , which leads to the message complexity of 3 = .n

A more precise computation of worst-case complexity for the modified version of 
the algorithm can be found in Maekawa’s original paper [M85]. The complexity is still 
O n= ,( )  but the constant of proportionality is larger.

7.3 TOKEN-PASSING ALGORITHMS
Another class of distributed mutual exclusion algorithms uses the concept of an explicit 
variable token that acts as a permit for entry into the CS and can be passed around the 
system from one requesting process to another. Whichever process wants to enter its CS 
must acquire the token. The first known algorithm belonging to this class is due to Suzuki 
and Kasami.

7.3.1 Suzuki–Kasami Algorithm

This algorithm is defined for a completely connected network of processes. It assumes that 
initially an arbitrary process has the token. A process i that does not have the token but 
wants to enter its CS broadcasts a request (i, num), where num is sequence number of that 
request. The algorithm guarantees that eventually process i receives the token.

Every process i maintains an array req[0.. n − 1] of integers, where req[j] designates the 
sequence number of the latest request received from process j. Note that although every pro-
cess receives a request, only one process (which currently has the token) can grant the token. 

* This informal argument echoes the reasoning in the original paper. Sanders [S87] claimed that the modified algorithm 
is still prone to deadlock.
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FIGURE 7.1 An example showing the first two phases of Maekawa’s modified algorithm. Process 2 
sends an ack to 5 and a failed message to 1. But when 2 later receives a request with a time stamp 12, 
it sends an inquire message to 5 to find out if it indeed entered its CS.
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As a result, some pending requests become stale or outdated. An important issue in this 
algorithm is to identify and discard these stale requests. To accomplish this, each process 
uses the following two additional data structures that are passed on with the token by its 
current holder:

• An array last[0.. n − 1] of integers, where last[k] = r implies that during its last visit to 
its CS, process k has completed its rth trip

• A queue Q containing the identifiers of processes with pending requests

When a process i receives a request with a sequence number num from process k, it updates 
req[k] to max(req[k], num), so that req[k] now represents the most recent request from pro-
cess k. A process holding the token must guarantee (before passing it to another process) 
that its Q contains the most recent requests. To satisfy this requirement, when a process i 
receives a token from another process, it executes the following steps:

• It copies its num into last[i].

• For each process k, process i retains process k’s name in its local queue Q only if 
1 + last[k] = req[k] (this establishes that the request from process k is a recent one).

• Process i completes the execution of its CS codes.

• If Q is nonempty, then it forwards the token to the process at the head of Q after delet-
ing its entry.

To enter the CS, a process sends (n − 1) requests and receives one message containing 
the token. The total number of messages required to complete one visit to its CS is thus 
(n − 1) + 1 = n. Readers are referred to [SK85] for a proof of this algorithm.

7.3.2 Raymond’s Algorithm

Raymond suggested an improved version of a token-based mutual exclusion algorithm 
that works on a network with a tree topology. At any moment, one node holds the token, 
and it serves as a root of the tree. Every edge is assigned a direction, so that by following 
these directed edges, a request can be sent to that root. If there is a directed edge from i to j, 
then j is called the holder of i. As the token moves from one process to another, the root 
changes, and so do the directions of the edges (Figure 7.2).
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FIGURE 7.2 Two configurations in Raymond’s algorithm: (a) process 3 holds the token and 1 and 
4 make requests in that order; (b) the token is transferred to 1.
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In addition to the variable holder, each node has a local queue Q to store the pending 
requests. Only the first request is forwarded to the holder. An outline of Raymond’s algo-
rithm is presented in the following:

R1: If a node j has the token, then it enters its CS. Otherwise, to enter its CS, a node 
enters the request in its local Q.

R2: When a node j (which is not holding the token) has a nonempty request Q, it sends a 
request to its holder, unless j has already done so and is waiting for the token.

R3: When the root receives a request, it sends the token to the neighbor at the head of 
its local Q after it has completed its own CS. Then, it sets its holder variable to that 
neighbor.

R4: Upon receiving a token, a node j forwards it to the neighbor at the head of its local 
Q, deletes the request from Q, and sets its holder variable to that neighbor. If there are 
pending requests in Q, then j sends another request to its holder.

Since there is a single token in the system, the proof of safety (ME1) is trivial. Deadlock 
is impossible (ME2) because the underlying directed graph is acyclic: a process i waits for 
another process j only if there is a directed path from i to j, which implies that j does not 
wait for i. Finally, fairness follows from the fact that the queues are serviced in the order 
of arrival of the requests, and a new request from a process that acquired the token in the 
recent past is enqueued behind the remaining pending requests in its local queue.

For a detailed proof of this algorithm, see [R89]. Since the average distance between pairs 
of nodes in a randomly generated tree is O(log n), the message complexity of Raymond’s 
algorithm is claimed to be O(log n).

7.4 SOLUTIONS ON THE SHARED-MEMORY MODEL
Historically, the bulk of the work in the area of mutual exclusion has been done on 
shared-memory models. The Dutch mathematician Dekker was the first to propose a 
solution to the mutual exclusion problem using atomic read and write operations on a 
shared memory. The requirements of a correct solution on the shared-memory model 
are similar to those in the message-passing model, except that fairness is specified 
as freedom from livelock or freedom from starvation: no process can be indefinitely pre-
vented from entering its CS by other processes in the system. This fits the definition of 
weak fairness: if a process remains interested in entering into its CS, then it must eventu-
ally be able to do so.

Of the many algorithms available for solving the mutual exclusion problem, we will only 
describe Peterson’s algorithm.

7.4.1 Peterson’s Algorithm

Gary Peterson’s solution is considered to be the simplest of all the solutions to the mutual 
exclusion problem using atomic read and write operations. We first present his two-process 
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solution here. There are two processes: 0 and 1. Each process i has a Boolean variable flag[i] 
that can be read by any process, but written by i only. To enter its CS, each process i sets 
flag[i] to true. To motivate the readers, we first discuss a naive approach in which each pro-
cess, after setting its own flag to true, checks if the flag of the other process has also been set 
to true and jumps to a conclusion as summarized in the following:

program naïve;
define flag[0], flag[1]: shared Boolean;
initially both are false;

{process 0 repeats the following forever}
flag[0]:=true;
do flag[1] → skip od;
critical section;
flag[0] := false

{process 1 repeats the following forever}
flag[1] := true
do flag[0] → skip od;
critical section;
flag[1] := false

The solution guarantees safety. However, it is not deadlock-free. If both processes complete 
their first steps in succession, then there will be a deadlock in their second steps.

To remedy this, Peterson’s solution uses a shared integer variable turn that can be read 
and written by both processes. Since the writing operations on shared variables are atomic, 
in the case of a contention (indicated by flag[0] = flag[1] = true), both processes update 
turn, and the last write prevails. This delays the CS entry of the process that updated turn 
last. The program is as follows:

program peterson;
define flag[0], flag[1] shared Boolean;
 turn: shared integer
initially flag[0] = false, flag[1] = false, turn = 0 or 1

 {program for process 0}
do true→
1: flag[0] := true;
2: turn := 0;
3: do (flag[1] ∧ turn = 0) → skip od
4: critical section;
5: flag[0] := false;
6: non-critical section codes
od
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 {program for process 1}
do true →
7: flag[1] := true;
8: turn := 1;
9: do (flag[0] ∧ turn = 1) → skip od;
10: critical section;
11: flag[1] := false;
12: non-critical section codes
od

Note that the conditions in step 3 and step 9 need not be evaluated atomically. As a con-
sequence, when process 0 has checked flag[1] to be true and is reading the value of turn, 
flag[1] may be changed to false by process 1 (step 11). It is also possible that process 0 has 
checked flag[1] to be false and is entering its CS, but by that time, process 1 has changed 
flag[1] to true (step 7). Despite this, the solution satisfies all the correctness criteria intro-
duced earlier.

Proof of the absence of deadlock (ME2) (by contradiction): Process 0 can potentially 
wait in step 3, and process 1 can potentially wait in step 9. We need to show that they 
both cannot wait for each other. Suppose they both wait. Then the condition (flag[0] ∧ 
turn = 1) ∧ (flag[1] ∧ turn = 0) must be true. However, (turn = 1 ∧ turn = 0) = false. 
Therefore, deadlock is impossible.  ◾

Proof of safety (ME1): Without loss of generality, assume that process 0 is in its CS (step 4). 
This must have been possible because in step 3, either flag[1] was false or turn = 1 or both of 
these were true. The issue here is to demonstrate that process 1 cannot enter its CS.

To enter its CS, process 1 must read flag[0] as false or turn as 0. Since process 0 is already 
in its CS, flag[0] is true, so the value of turn has to be 0. Is this feasible?

Case 1: Process 0 reads flag[1] = false in step 3:

⇒ Process 1 has not executed step 7.

⇒ Process 1 eventually sets turn to 1 (step 8).

⇒ Process 1 checks turn (step 9) and finds turn =1.

⇒ Process 1 waits in step 9 and cannot enter its CS.

Case 2: Process 0 reads turn = 1 in step 3:

⇒ Process 1 executed step 8 after process 0 executed step 2.

⇒ In step 9, process 1 reads flag[0] = true and turn =1.

⇒ Process 1 waits in step 9 and cannot enter its CS.   ◾
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Proof of progress (ME3): We need to show that once a process sets its flag to true, it 
eventually enters its CS. Without loss of generality, assume that process 0 has set flag[0] 
to true but is waiting in step 3 since it found the condition (flag[1] ∧ turn = 0) to be true. 
If process 1 is in its CS, then eventually in step 11, it sets flag[1] to false and gives an 
opportunity to process 1 to enter its CS. If process 0 notices this change, then it enters 
its CS. If process 0 does not utilize this opportunity, then subsequently process 1 will 
set f lag[1] to true (step 6) again for its next attempt for entry to its CS. Eventually it 
sets turn = 1 (step 8). This stops process 1 from making any further progress and allows 
process 0 to enter its CS.  ◾

Peterson generalized his two-process algorithm to a system of n processes (n > 1) as fol-
lows: the program runs for n − 1 rounds—in each round, an instance of the two-process 
algorithm is used to prevent at least one process from advancing to the next round, and 
the winner after n − 1 rounds enters the CS. Like the two-process solution, the n-process 
solution satisfies all the required properties. The program is as follows:

program Peterson n-process;
define flag, turn: array [0.. n − 1] of shared integer;
initially ∀k:flag[k] = 0, and turn = 0

 {program for process i}
do true →
1: j:=1;
2: do j ≠ n − 1
3:  flag[i] := j;
4:  turn[j] := i;
5:  do (∃k ≠ i: flag[k] ≥ j ∧ turn[j] = i) → skip od;
6:  j := j + 1;
7: od;
8: critical section;
9: flag[i] := false;
10: non-critical section codes
od

7.5 MUTUAL EXCLUSION USING SPECIAL INSTRUCTIONS
Since it is not easy to implement shared-memory solutions to the mutual exclusion prob-
lem using read–write atomicity only, many processors include special instructions (with 
larger grains of atomicity) to facilitate such implementations. We will discuss two such 
implementations here:

7.5.1 Solution Using Test-and-Set

Let x be a shared variable and r be a local or private variable of a process. Then the instruc-
tion TS (r, x) is an atomic operation defined as (r := x; x := 1). Instructions of this type are 
known as RMW instructions, as they package three operations: read, modify, and write as 
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one indivisible unit. Using TS, the mutual exclusion problem can be solved for n processes 
(n > 1) as follows:

program Test-and-set (for any process);
define x: shared integer;
  r: integer (private);
initially x = 0, r = 1;

do true →
 do r ≠ 0 → TS(r, x) od;
 critical section;
 x := 0
od

Due to the atomicity property, all TS operations are serialized, the first process that exe-
cutes the TS instruction enters its CS. Note that the solution is deadlock-free and safe, but 
does not guarantee fairness since a process may be prevented from entering its CS for an 
indefinitely long period by other processes.

7.5.2 Solution Using Load-Linked and Store-Conditional

In many multiprocessors, atomic RMW instructions are difficult to implement. An alter-
native is to use load-linked (LL) and store-conditional (SC)—these are a pair of special 
instructions that achieve process synchronization by using some built-in features of the 
cache controllers for bus-based multiprocessors. LL and SC were first used by in the alpha 
processor, and similar instructions have since been used in MIPS, PowerPC, and ARM 
processors. Unlike TS, LL, and SC are not atomic RMW operations, but they simplify 
the implementation of atomic RMW operations and thus can be used to solve the mutual 
exclusion problem. If x is a shared integer variable in the memory and r is a private integer 
local to a process, then the semantics of LL and SC are as follows:

• LL(r, x) is like a machine instruction load (i.e., r := x). In addition, the system auto-
matically tracks changes to the address x.

• SC(r, x) is like a machine instruction store (i.e., x := r). However, if the process executing 
SC is the first process to do so after the last LL executed by any process, then the store 
operation succeeds, and the success is reported by returning a value 1 into r. Otherwise, 
the store operation fails, the value of x remains unchanged, and a 0 is returned into r. 
The snooping cache controller responsible for maintaining cache coherence helps track 
changes to the address x during the LL(r, x) and SC(r, x) operations. In the following, we 
present a solution to the mutual exclusion problem using LL and SC:

program mutex (for process i);
define x: shared integer; r: integer (private);
initially x = 0;
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 do true →
1: try: do r ≠ 0 → LL(r, x) od; {CS is busy}
2:  r = 1; SC(r, x);
3:  if r = 0 → goto try fi; {SC did not succeed)
4:  critical section;
5:  x := 0;
6:  non-critical section codes;
7:  od

Observe that lines 1–3 essentially implement a TS instruction without blocking the bus for 
two consecutive bus cycles. Additionally, such instructions are easier to accommodate in 
the instruction set of reduced instruction set computers. Popular processors have adopted 
different variations of LL and SC instructions—for example, ARM version 6 and higher 
uses LDREX/STREX instructions that work similar to LL/SC.

7.6 GROUP MUTUAL EXCLUSION
The classical mutual exclusion problem has several variations, and group mutual exclu-
sion is one of them. In this generalization, instead of trying to enter their individual 
CSs, processes opt to join one of distinct forums. Group mutual exclusion requires 
that at any time, at most, one forum should be in session, but any number of processes 
should be able to join the forum at a time. An example is that of a movie theater, where 
different people may want to schedule their favorite movies. Here, the forum is the set 
of viewers of a certain movie, and the forum is in session when the movie is screened 
in the movie theater. The problem was first proposed and solved by Joung in 1999. A 
more precise specification of the problem follows: let there be n processes 0.. n − 1 each 
of which chooses to be in one of m distinct forums. Then the following four conditions 
must hold:

Mutual exclusion: At most, one forum must be in session at any time.

No deadlock: At any time, at least one process should have an eligible action.

Bounded waiting: Every forum that has been chosen by some process must be in session 
within a bounded time.

Concurrent entry: Once a forum is in session, concurrent entry into that session is guar-
anteed for all willing processes.

The group mutual exclusion problem is a combination of the classical mutual exclu-
sion problem and the readers and writers problem (inasmuch as multiple readers can 
concurrently read a file), but the framework is more general. It reduces to the classical 
mutual exclusion problem if each process has its own forum not shared by any other 
process.
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A centralized solution: To realize the challenges involved in finding a solution, we first 
attempt to solve it using a central coordinator. Let there be only two sessions F and F′. 
Each process has a flag ∈ {F, F′, ⊥}, which indicates its preference for the next session. 
Here, flag = ⊥ implies that the process is not interested in joining any session. The coordi-
nator will read the flags of the processes in ascending order from 0 to n − 1 and guarantee 
that the first active process always gets entry to its forum, followed by others requesting 
the same forum.

The simplistic solution will satisfy all requirements of group mutual exclusion except 
that of bounded waiting, since there is a possibility of starvation: when one forum is chosen 
to be in session, processes can collude to enter and leave that forum in such a manner that 
the other forum is never scheduled.

It is possible to resolve this problem by electing a leader for each forum that is sched-
uled. In fact, the very first process that enters a forum is the leader. When the leader leaves 
a forum, other processes are denied further entry into that forum. This prevents the pro-
cesses joining a forum from monopolizing it.

Let us now study a decentralized solution to this problem.

A decentralized solution: The first version of the decentralized solution proposed by Joung 
follows the footsteps of the centralized solution. It works on a shared-memory model. Each 
process cycles through the following four states: (request, in_cs, in_forum, passive). Each pro-
cess has a flag = (state, op), where state ∈ {request, in_cs, in_forum, passive} and op ∈ {F, F′, ⊥}. 
A process trying to join a forum F sets its flag to (request, F) and eventually moves to the in_cs 
state that gives it a temporary permit to attempt entry to the forum F. It enters forum F if no 
other process is in the in_cs state for the other forum F′. Finally, the process exits forum F 
and becomes passive. The solution is shown as follows:

 First attempt with two forums F and F ′
 define flag: array[1..n − 1] of (state, op), turn ∈ {F, F ′}
  state ∈ {request, in_cs, in_forum, passive}
  op ∈ {F, F ′, ⊥}
 {Program for process i trying to attend forum F}
1 do ∃j ≠ i: flag[j] = (in_cs, F ′) →
2  flag[i] := (request, F); {request phase}
3  do turn ≠ F ∧ ¬all_passive(F ′) → skip od;
4  flag[i] := (in_cs, F); {in_cs phase}
5 od;
6 attend forum F; {in_forum phase}
7 turn := F′;
8 flag[i] := (passive, ⊥) {passive phase}

The previous program uses the predicate:

all_passive (F′) ≡ ∀j ≠ i: flag[j] = (state, op) ⇒ op ≠ F′
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The first version is fair with respect to forums. As in Peterson’s two-process algorithm, 
contention is fairly resolved by using a variable turn. Note that reaching the in_cs phase 
gives the requesting process a temporary permit—it does not automatically qualify a 
process to attend its forum. For this, it also has to make sure that all processes in the 
other forum F′ are out of the in_cs state.

The proposed however is not fair with respect to processes: If several processes request a 
forum F, then it is guaranteed that at least one of them will succeed, but we don’t know who 
will. A process, while infrequently checking the predicate in line 3, may find that between 
two consecutive unsuccessful attempts, the forum has changed from F′ to F and then back 
to F′, giving it no chance to make progress. Thus, a requesting process may miss out the 
requested forum for an indefinite period of time. To make it fair with respect to processes, 
Joung’s algorithm uses the idea from the centralized solution by introducing a leader for 
every session. Given a forum F, some process will lead others to F. For each process i, 
define a variable successor[i] ∈ {F, F′, ⊥} to denote the forum that it is captured to attend 
by the leader. The very first process that enters a forum F is the leader of that forum, and 
the processes that are captured into F are the successors of the leader. Only a leader can 
capture successors. A process k for which successor[k] = F gets direct entry into session F as 
long as the leader of F is in session. The permit is withdrawn as soon as the leader quits F. 
successor[k] = ⊥ implies that process k is not currently captured. A description of the fair 
solution to the group mutual exclusion problem can be found in [J98].

7.7 CONCLUDING REMARKS
There are different metrics for evaluating the performance of mutual exclusion algo-
rithms. In message-passing solutions, only the number of messages required to enter the 
CS is emphasized. For shared-memory systems, a metric is the maximum number of steps 
(atomic read or write operations) that a process takes to enter its CS in the absence of con-
tention. Fairness is determined by the maximum number of other processes that may enter 
their CSs between two consecutive CS entries by a given process. To satisfy the progress 
property (ME3), this number has to be finite.

In message-passing solutions, using time stamps to determine the order of requests, the 
size of the logical clock (or the sequence number) can become unbounded. In [RA81], Ricart 
and Agrawala addressed the question of bounding the size of the logical clock. Assuming 
that the logical clock values are not incremented by any event outside the mutual exclusion 
algorithm, they argued that with n processes, the maximum difference between two dif-
ferent time stamps cannot exceed (n − 1). Therefore, it is adequate to increment the logical 
clock in the mod M field, where M = 2n − 1, since it will resolve without ambiguity whether 
a time stamp is ahead or behind another time stamp.

In token-based algorithms, once a process acquires the token, it can enter the CS as 
many times as it wants unless it receives a request from another process. While reusing a 
permit is sometimes criticized as undemocratic, this reduces the message complexity when 
some processes access their CSs more often than others.
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Shared-memory solutions to the mutual exclusion problem using read–write atomicity 
proved to be a fertile area of research and have been extensively studied. Joung’s group 
mutual exclusion problem [J98] added a new twist to this problem by allowing a number of 
processes interested in the same forum to concurrently enter their CSs. This is relevant for 
computer-supported cooperative work.

Computer architects however decided to make the CS algorithms less painful by intro-
ducing special instructions in the instruction set. In addition to TS and (LL, SC) discussed 
in this chapter, there are other instructions like compare-and-swap (CAS) or fetch-and-add 
(FA) to facilitate process synchronization. A well-known software construct for process 
synchronization is semaphore. A semaphore s is a nonnegative shared integer variable that 
allows two atomic operations: P(s) ≡ 〈s > 0 → s: = s − 1〉 and V(s) ≡ 〈s: = s + 1〉. Semaphores 
can be implemented using atomic read–write operations or more easily using special 
instructions like TS or CAS or LL/SC.

In both shared-memory and message-passing solutions to mutual exclusion, a desirable 
property is that no process that is outside its CS should influence the entry of another pro-
cess into its CS. As a consequence, the following n-process solution (on the shared-memory 
model) is considered unacceptable:

program round-robin (for process i}
define turn ∈ {0.. n − 1}

do true →
 do turn ≠ i → skip od;
 critical section;
 turn := turn + 1 mod n;
 non-critical section
od

This is because if process 0 wants to enter its CS more frequently than process 1 through 
n − 1, then process 0 may have to wait even if no process is in its CS, because each of the 
slower processes 1 through n − 1 has to take their turn to enter CS. Despite this, some prac-
tical networks use similar ideas to implement mutual exclusion. An example is the token 
ring. The acceptability hinges on the fact that a process not willing to use its turn promptly 
passes the token to the next process, minimizing latency.

7.8 BIBLIOGRAPHIC NOTES
Dijkstra presented the mutual exclusion problem in [D65] where he first described 
Dekker’s two-process solution on the shared-memory model and then generalized it to 
n processes. His solution was not starvation-free. The first known solution that satisfied 
the progress property was due to Knuth [K66]. Peterson’s algorithm [P81] is the simplest 
two-process algorithm on the shared-memory model. His technique for generalization 
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to the n-process case is applicable to the generalization of other two-process algorithms 
too. The bakery algorithm was first presented by Lamport in [L74] and later improved 
in [L79]. It is the only known algorithm that solves the mutual exclusion problem with-
out assuming read–write atomicity—that is, when a read overlaps with a write, the read 
is allowed to return any value, but still the algorithm works correctly. However, the 
unbounded nature of the shared variable poses a practical limitation. Ben-Ari’s book 
[B82] contains a description of several well-known shared-memory algorithms for 
mutual exclusion.

Lamport’s message-passing algorithm for mutual exclusion is described in [L78]; Ricart 
and Agrawala’s algorithm can be found in [RA81]—a small correction was reported later. 
Carvalho and Roucairol [CR83] suggested an improvement of [RA81] that led to a mes-
sage complexity between 0 and 2(n − 1). Maekawa’s algorithm appears in [M85], and it 
is the first such algorithm with sublinear message complexity. Sanders [S87] presented 
a general framework for all message-based mutual exclusion algorithms. Suzuki and 
Kasami’s algorithm [SK85] was developed in 1981, but due to editorial problems, its pub-
lication was delayed until 1985. Raymond’s algorithm [R89] is the first algorithm with a 
message complexity of O(log n). 

Joung [J98] introduced the group mutual exclusion problem. Hennessy and Patterson’s 
book [HP11] contains a summary of various synchronization primitives used by historical 
and contemporary processors on shared-memory architectures.

EXERCISES
7.1 In Ricart–Agrawala’s distributed mutual exclusion algorithm, show that processes 

enter their CSs in the order of their request time stamps even if the channels are 
not FIFO.

7.2 The L-exclusion problem is a generalized version of the mutual exclusion problem 
in which up to L processes (L ≥ 1) are allowed to be in their CSs simultaneously. 
Precisely, if fewer than L processes are in the CS at any time and one more process 
wants to enter its CS, then it must be allowed to do so. Modify Ricart–Agrawala’s 
algorithm to solve the L-exclusion problem.

7.3 Consider running Maekawa’s algorithm on a system of 13 processes. Figure out the 
composition of the 13 subsets S0−S12, so that (1) each subset includes four processes, 
(2) there are exactly four subsets, and (3) process i ∈ Si.

7.4 In the Suzuki–Kasami algorithm, prove the liveness property that any process request-
ing a token eventually receives the token. Also compute an upper bound on the num-
ber of messages exchanged in the system before the token is received.

7.5 In a network of processes, the local mutual exclusion problem guarantees that no 
two neighbors execute a critical action at the same time. Extend Ricart–Agrawala’s 
mutual exclusion algorithm to solve the local mutual exclusion problem.
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7.6 Here is a description of Dekker’s solution, the first known solution to the mutual 
exclusion algorithm for two processes:

program dekker (for two processes 0 and 1}
define flag[0], flag[1]: shared Boolean; turn: shared integer
initially flag[0] = flag[1] = false, turn = 0 or 1

 {program for process 0}

1 do true →
2  flag[0] = true;
3  do flag[1] →
4   if turn = 1→
5    flag[0] := false;
6    do turn = 1 → skip od;
7    flag[0] := true;
8   fi;
9  od;
10  critical section;
11  flag[0] := false; turn := 1;
12 non-critical section codes;
13 od

 {program for process 1}
14 do true →
15  flag[1] := true;
16  do (flag[0] →
17   if turn = 0 →
18    flag[1] := false;
19    do turn = 0 → skip od;
20    flag[1] := true;
21   fi;
22  od;
23  critical section;
24  flag[1] := false; turn := 0;
25  non-critical section codes;
26 od

Check if the solution satisfies the necessary liveness and safety properties, and 
provide brief arguments.

7.7 Consider the following two-process mutual exclusion algorithm:

program resolve{for process i ∈ {1, 2}}
define x: integer, y: boolean
initially y = false
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do true →
start: x := i;
 if y →
  do y → skip od;
  goto start;
 fi;
 y := true
 if x ≠ i→
  y := false;
  do x ≠ 0 → skip od;
  goto start;
 fi;
 critical section;
 y := false; x := 0
 non-critical section;
od

 a. Does it satisfy the requirements of a correct solution?
 b. If n processes 1, 2,.., n execute the previous algorithm, then what is the maximum 

number of processes that can be in their CSs concurrently?
7.8 In [L74], Lamport proposed the following solution to the mutual exclusion prob-

lem on the shared-memory model. It was named bakery algorithm, because to 
request access to the CS, each process has to take a ticket or a number as in a 
bakery.

program bakery {for process i}
define k: integer;
 choosing : shared array [1.. n] of boolean;
 number: shared array [1.. n] of integer;
initially k = 1;
do true →
 choosing[i] := true;
 number[i] := 1 + max{number[1], number[2],..., number[n]};
 choosing[i] := false
 do k ≠ n→
  do choosing[k] → skip od;
   do number[k] ≠ 0 ∧ (number[k], k) <lex (number[i], i) 
   → skip od;
  {Note: <lex means lexicographically smaller than}
  K := k + 1;
 od;
critical section;
number[i] := 0;
non-critical section;
od
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 a. Study the solution and explain why it works.
 b. If read and write operations on variables are not atomic, then a read operation 

that is concurrent with a write on the same variable can return an arbitrary value. 
Show that bakery algorithm works even if the read and write operations are not 
atomic. (Note: Read the original paper for a proper understanding of the solution.)

7.9 In [L85], Lamport presented the following mutual exclusion algorithm for a shared-
memory model:

program fast mutex
define x, y: integer
 z: array [1.. n − 1]of boolean
initially y = false
do true→
start: z[i] := true;
 x := i;
 if y ≠ 0→
  z[i] := false;
  do y ≠ 0 → skip od;
  goto start;
 fi;
 y := i;
 if x ≠ i →
  z[i] := false;
  j := 1;
  do j < n →
   do z[j] → skip; j := j + 1 od
  od;
  if y ≠ 0 →
   do y ≠ 0 → skip od;
   goto start;
  fi
 fi;
 critical section;
 y := 0; z[i] := false;
 non-critical section;
od

In previous algorithms, a process had to check with all other processes before enter-
ing its CS, so the time complexity was O(n). This algorithm claims that in the absence 
of contention, a process can enter its CS in O(1) time.

 a. Show that in the absence of contention, a process performs at most five write and 
two read operations to enter its CS.

 b. Is the algorithm starvation-free?
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7.10 Some shared-memory multiprocessors have an atomic instruction FA defined as 
 follows. Let x be a shared variable and v be a private variable local to a process. Then 
FA(x, v) ≡ 〈return x;  x := x + v〉.

 a. Implement FA using LL and SC.
 b. Solve the mutual exclusion problem using FA.
7.11 Consider a bus-based multiprocessor, where processors use TS to implement CSs. Due 

to busy waiting, each processor wastes a significant fraction of the bus bandwidth. How 
can you minimize this using the private caches of the processors? Explain your answer.

7.12 A popular application of the mutual exclusion is on the Ethernet: when multiple 
 processes try to enter their CSs at the same time, only one succeeds. Study how 
Ethernet works. Then write down the mutual exclusion algorithm used by the pro-
cesses on the Ethernet to gain exclusive access to transmit data.

7.13 (Programming project) Figure 7.3 shows a section of a traffic route around the narrow 
bridge AB on a river. Two red cars (R1, R2) and two blue cars (B1, B2) move along the 
designated routes that involve indefinite number of trips across the bridge. The bridge 
is so narrow that at any time, multiple cars cannot pass in opposite directions.

 a. Using the message-passing model, design a decentralized protocol so that at most 
one car is on the bridge at any time and no car is indefinitely prevented from 
crossing the bridge. Treat each car to be a process and assume that their clocks are 
not synchronized.

 b. Modify the protocol so that multiple cars can be on the bridge as long as they are 
moving in the same direction, but no car is indefinitely prevented from crossing 
the bridge.

Design a graphical user interface to display the movement of the cars, so that the 
observer can visualize the cars, control their movements, and verify the protocol.

R1

R2

B1

B2
Narrow bridge

FIGURE 7.3 Cars crossing a narrow bridge on a river.
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C h a p t e r  8

Distributed Snapshot

8.1 INTRODUCTION
A computation is a sequence of atomic actions that transform a given initial state to the 
final state. While such actions are totally ordered in a sequential process, they are only 
partially ordered in a distributed system. It is customary to reason about the properties of 
a program in terms of states and state transitions.

In this context, the state (also known as global state or configuration) of a distributed 
system is the set of local states of all the component processes as well as the states of every 
channel through which messages flow. Since the local physical clocks are never perfectly 
synchronized, the components of a global state can never be recorded at the same time. In 
asynchronous distributed systems, actions are not related to time. So the important ques-
tion is as follows: When or how do we record the states of the processes and the channels? 
Depending on when the states of the individual components are recorded, the value of the 
global state can vary widely.

The difficulty can be best explained using a simple example. Consider a system of three 
processes numbered 0, 1, and 2 connected by FIFO channels (Figure 8.1), and assume that 
an unknown number of indistinguishable tokens are circulating indefinitely through this 
network. We want the processes to cooperate with one another to count the exact num-
ber of tokens circulating in the system (without ever stopping the system). The task has 
to be initiated by an initiator process (say process 0) that will send query messages to the 
other processes to record the number of tokens sighted by them. Consider the case when 
there is exactly one token, and let ni denote the number of tokens recorded by process i. In 
Figure 8.1, depending on when the individual processes count the tokens, each of the fol-
lowing situations is possible:

Possibility 1: Process 0 records n0 = 1 when it receives the token. When process 1 records 
n1, assume that the token is in channel (1, 2), so n1 = 0. When process 2 records n2, the 
token is in channel (2, 0), so n2 = 0. Therefore, n0 + n 1 + n2 = 1.
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Possibility 2: Process 0 records n0 = 1 when it receives the token. Process 1 records n1 when 
the token has reached process 1, so n1 = 1. Finally, process 2 records n2 when the token 
has reached process 2, so n2 = 1. Thus, n0 + n1 + n2 = 3. Since tokens are  indistinguishable, 
no process knows that the same token has been counted three times!

Possibility 3: Process 0 records n0 = 0 since the token is in channel (0, 1) at the time of 
recording. When processes 1 and 2 want to record the count, the tokens have already 
left them, so n1 = 0 and n2 = 0. Thus, n0 + n 1 + n2 = 0.

Clearly, possibilities 2 and 3 reflect incorrect views of the global state. How can we devise a 
scheme that always records a correct or a consistent view of the global state? In this chapter, 
we address this question.

The recording of the global state may look simple for some external observer who looks 
at the system from outside. The same problem is surprisingly challenging, when one takes 
a snapshot from inside the system. In addition to the intellectual challenge, there are many 
interesting applications of this problem. Some examples are as follows:

Deadlock detection: Any process that does not have an eligible action for a prolonged 
period would like to find out if the system has reached a deadlock configuration. This 
requires the recording of the global state of the system.

Termination detection: Many computations run in phases. In each phase, every process 
executes a set of actions. When every process completes all the actions belonging to 
phase i and there is no message in transit, phase i terminates and the next phase (i + 1) 
begins. To begin a new phase, a process must therefore know whether the computa-
tion in the previous phase has terminated.

System reset or rollback: In case of a malfunction or a loss of coordination, a dis-
tributed system will need to roll back to a consistent global state and initiate a 
 recovery. Previous snapshots may be used to define the point from which recovery 
should begin.

To understand the meaning of a consistent snapshot state, we will take a look at some of its 
important properties.

0 1

2

(0, 1)

(1, 2)(2, 0)

FIGURE 8.1 A token circulating through a system of three processes numbered 0, 1, and 2.
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8.2 PROPERTIES OF CONSISTENT SNAPSHOTS
A critical examination of the three possibilities in Section 8.1 will lead to a better under-
standing of what is meant by a consistent snapshot state. Recall that in the absence of a 
global clock, concurrency implies the absence of a causal order (Section 3.6). A snapshot 
state SSS consists of a set of local states, where each local state is the outcome of a recording 
event that follows a send, or a receive, or an internal action. The important notion here is 
that of a consistent cut.

8.2.1 Cuts and Consistent Cuts

A cut is a set of events—it contains at least one event per process. Draw a timeline for every 
process in a distributed system, and represent events by points on the timeline as shown 
in Figure 8.2. Here, {c, d, f, g, h} is a cut. A cut is called consistent if for each event that it 
contains, it also includes all events causally ordered before that event. Let a and b be two 
events in a distributed system. Then,

 ( ) ( )a C b a b C∈ ∧ ⇒ ∈consistent cut ≺

Thus, for a message m, if the state following receive(m) belongs to a consistent cut, then 
the state following send(m) also must belong to that cut. Of the two cuts in Figure 8.2, 
Cut 1 = {a, b, c, m, k} is consistent, but Cut 2 = {a, b, c, d, g, m, e, k, i} is not, since (g ∈ Cut 2) ∧ 
(h ≺ g) but (h ∉ Cut 2). As processes make progress, new events update the consistent cut. 
The progress of a distributed computation can be visualized as the forward movement of 
the frontier (the latest events) of a consistent cut.

The set of local states following the most recent events (an event a is a most recent 
event if there is no other event b such that a ≺ b) of a cut defines a snapshot. A consistent 
cut induces a correct or consistent distributed snapshot, that is, the set of local states fol-
lowing the recorded events of a consistent cut form a correct or consistent distributed 
snapshot.

Cut 1 Cut 2

a b c d

e f

g

hk i j

m

FIGURE 8.2 Two cuts of a distributed system. The broken lines represent cuts, and the solid-
directed edges represent message transmission.
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In a distributed system, many consistent snapshots can be recorded. A snapshot that is 
often of practical interest is the one that is most recent. Let C1 and C2 be two consistent cuts 
leading to two different snapshots S1 and S2, respectively, and let C1 ⊂ C2. Then, C2 is more 
recent than C1, and snapshot S2 is more recent than snapshot S1.

A computation (also called a behavior or a run) is a sequence of events in a  distributed 
system. Let a and b be a pair of events in a computation. Then, the computation is  consistent 
when ∀a,b:  a ≺ b ⇒ a precedes b in it. Such a computation reflects one of the feasible 
 schedules of a central scheduler. When the events are partially ordered, there may be mul-
tiple consistent runs. Given a consistent run X that contains a pair of concurrent events 
c and d, another consistent run Y can be generated from X by swapping their order and 
without violating any other causal order in the system.

Chandy and Lamport [CL85] addressed the issue of consistent snapshot and pre-
sented an algorithm for recording such a snapshot. The following section describes their 
algorithm.

8.3 CHANDY–LAMPORT ALGORITHM
Let the topology of a distributed system be represented by strongly connected graph. Each 
node represents a process and each directed edge represents a FIFO channel. The snapshot 
algorithm is superposed on the underlying application and is noninvasive inasmuch as it 
does not influence the underlying computation in any way. Note that temporarily freezing 
the entire system, taking a snapshot, and then restarting the system are not options, since 
freezing a nontrivial distributed system that provides a service is costly and impractical.

A process called the initiator initiates the distributed snapshot algorithm. Any  process 
can be an initiator. The initiator process sends a special message, called a marker (*) 
that prompts other processes in the system to record their states. The markers are for 
 instrumentation only—they neither force a causal order among events nor influence the 
semantics of the underlying computation in any way. The global state consists of the states 
of the processes as well as the channels. However, channels are passive entities—so the 
responsibility of recording the state of a channel lies with the process on which the chan-
nel is incident.

For the convenience of explanation, we will use the colors white and red with the differ-
ent processes. Initially, every process is white. When a process receives the marker, it turns 
red if it has not already done so. Furthermore, every action executed by a process or every 
message sent by a process gets the color of that process, so both actions and messages can 
be red or white (Figure 8.3). The markers are used for instrumentation only and do not 
have any color. There are two actions in this algorithm as described in the following.

DS1: The initiator process, in one atomic action, does the following:

• Turns red

• Records its own state

• Sends a marker along all its outgoing channels



Distributed Snapshot   ◾   157  

DS2: Every process, upon receiving a marker for the first time and before doing anything 
else, does the following in one atomic action:

• Turns red

• Records its state

• Sends markers along all its outgoing channels

The state of a channel (p, q) is recorded as follows: let sent(p) denote the set of messages 
sent by process p along (p, q) and receive(q) denote the set of messages received by process q 
via (p, q). Then the state of the channel is recorded as sent(p)\receive(q). Here, sent(p) and 
received(q) are locally recorded by the processes p and q, respectively. The  snapshot algo-
rithm terminates, when

• Every process has turned red

• Every process has received a marker through each of its incoming channels and sent 
a marker along each of its outgoing channels

The individual processes only record the fragments of a snapshot state SSS. It requires 
another phase of activity to collect these fragments and construct a composite view of SSS. 
Global state collection is not a part of the snapshot algorithm.

While the initiator turns red at the very beginning of the snapshot taking process, every 
other process changes its color from white to red is due to the arrival of the first marker. 

W

W R

RW

White
action

White
action

Red
action

Red
action

Red
action

Red
action

White
action

0

1

2

Process 2 turns
red here

Process 1 turns
red here

Process 0 turns
red here

FIGURE 8.3 An example illustrating colors of action and messages: 0 is the initiator, W, white 
message; R, red message; and the star represents a marker.
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Red processes do not change their colors to white during the lifetime of the algorithm. The 
following lemma is the cornerstone of the algorithm:

Lemma 8.1

No red message is received by a white action.

Proof: Before a process p receives a red message from a process q along a channel (p, q), 
process q must have turned red and sent a marker to p along channel (p, q) (see DS2). Since 
the channels are FIFO, the receiving process p must have received that marker and turned 
red in the mean time. Thus, the receive action by the process p cannot be white. ◾

If all processes changed colors simultaneously, then the snapshot state SSS would have 
been determined by the states of all the processes just after this transition point. However, 
due to signal propagation delays, that is never the case. A reasonable alternative to this would 
be to record a sequence of white and red actions by all the processes, so that all white actions 
precede all red actions (Figure 8.4a). Here, SSS will correspond to the states of the processes 
after the last white actions and the first red actions by the  processes. There is however no 
guarantee that an observer will be able to observe the actions in this sequence. In reality, an 
observer will record the last white actions and the first red actions of the processes in some 
order, as in Figure 8.4b. For each process i in an observed sequence, w(i) must precede r(i), 
since a causal order exists between them. Note that (a) markers do not change the state of a 
process, and (b) white messages received by white processes or red messages received by red 
processes are not interesting in the context of the present problem.

r(i)r( j) r(l) r(k)w(i) w(j)w(k) w(l)

SSS

SSS

r(i) r( j) r(l)r(k)w(i) w(j)w(k) w(l)

r(i) r( j) r(l)r(k)w(i) w(j)w(k) w(l)

r(i) r( j) r(l)r(k)w(i) w( j)w(k) w(l)

r(i) r( j) r(l)r(k)w(i) w( j)w(k) w(l)

(a)

(b)

FIGURE 8.4 (a) The ideal view of the snapshot state: w(i) and r(i) denote, respectively, the last white 
action and the first red action by process i. (b) An observed sequence is being reduced to the ideal 
view via number of swap actions.
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We will now show that the snapshot state recorded using DS1 and DS2 is indeed  equivalent 
to the ideal view of Figure 8.4a. The equivalence hinges on the fact that a pair of actions 
(a, b) can be observed or scheduled in any order, as long as there is no causal order between 
them—so schedule (a, b) is equivalent to schedule (b, a). Now, the main theorem follows.

Theorem 8.1

The Chandy–Lamport algorithm records a consistent global state.

Proof: The snapshot algorithm records a state SSS′ that consists of the states of every pro-
cess when it turned red. Let w(i) and r(i) denote, respectively, the last white action and the 
first red action by process i. Without loss of generality, assume that an observer records the 
following partial schedule of actions (see Figure 8.4b) with processes i, j, k, l, …:

 w i w k r k w j r i w l r j r l( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )…

Call it a break, when a red action precedes a white action in a given schedule. The ideal view 
of the schedule (Figure 8.4a) has zero breaks, but in general, the number of breaks in the 
recorded sequence of actions can be a positive integer.

By Lemma 8.1, process j cannot receive a red message from process k in a white action, so 
there is no causal ordering between actions r(k) and w(j), and these actions can be swapped 
to produce an equivalent schedule. But this swap reduces the number of breaks by 1. It thus 
follows that in a finite number of swaps, the number of breaks in the equivalent schedule 
will be reduced to zero, and the resulting schedule will correspond to the ideal view of 
Figure 8.4. Therefore, the recorded state SSS′ is equivalent to a consistent snapshot SSS. ◾

8.3.1 Two Examples

To study various features of the Chandy–Lamport algorithm, we present two examples of 
computing the global state.

8.3.1.1 Example 1: Counting of Tokens
Consider Figure 8.1 again. Assume that that only token is in transit in the channel (0, 1) and 
process 0 initiates the snapshot algorithm. Then, the following is a valid sequence of events:

 1. Process 0 turns red; records n0 = 0, |sent(0, 1)| = 1, and |received(2, 0)| = 0; and sends 
the marker along (0, 1).

 2. Process 1 receives the token and forwards it along (1, 2) before receiving the marker. 
Then, it receives the marker; turns red; records n1 = 0, |received(0, 1)| = 1, and 
|sent(1, 2)| = 1; and sends the marker along (1, 2).

 3. Process 2 receives the token and forwards it along (2, 0) before receiving the marker. 
Then, it receives the marker; turns red; records n2 = 0, |received(1, 2)| = 1, and 
|sent(2, 0)| = 1; and forwards the marker to process 0.

 4. Process 0 receives the token and then receives the marker along (2, 0). The algorithm 
terminates here.
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The total number of tokens recorded is as follows: (n0 + n1 + n2) + (|sent(0, 1)| − 
|received(0, 1)|) + (|sent(1, 2)| − |received(1, 2)|) + (|sent(2, 0)| − |received(2, 0)|) = 1. 
This is consistent with the expected outcome.

8.3.1.2 Example 2: Communicating State Machines
This example is from [CL85]. Two state machines i and j communicate with each 
other by sending messages M and M′ along channels c1 and c2 (Figure 8.5), respec-
tively. Each state machine has two states: up and down. Let s(i) and s(j) denote the 
states of i and j,  respectively, and S0 represent the initial global state s(i) = s(j) = down 
and c1 = c2 = ∅. A possible sequence of global states is shown in Figure 8.5. The global 
state returns to S0 after machine j receives M, so that S0, S1, S2, S3, S0 forms a cyclic 
sequence.

Now, use the Chandy–Lamport algorithm to record a snapshot SSS. Assume that in 
global state S0, process i initiates the snapshot algorithm by sending a marker and then 
sending a message M along c1, which changes s(i) from down to up. Before M reaches 
j, state machine j sends M′ along c2, changing s(j) from down to up. Then, j receives 
the marker and forwards it along c2. Thereafter, message M′ and then the marker reach 
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FIGURE 8.5 A sequence of global states in a system of two communicating state machines.
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 process i in global state S3. Finally, M reaches j, and the system returns to the state S0. This 
leads to a following recording:

 

s i down sent c received c i

s j up

( ) , ( ) , ( ) { }

( ) ,

= = ∅ = ∅

=

1 2 Recorded by 

ssent c received c j( ) , ( ) { }2 1= ′ = ∅M Recorded by 

Accordingly, SSS ≡ s(i) = down, c1 = ∅, s(j) = up, c2 = M′.
Notice something unusual here: the snapshot state SSS does not belong to the cycle of 

states, so the system was never in that state! What good is a distributed snapshot if the 
system never reaches the resulting snapshot state?

To understand the significance of the recorded snapshot state, look at the partial history 
of the system (Figure 8.6). The behavior considered in our example is an infinite sequence 
of S0S1S2S3S0…, but other behaviors are equally possible. In fact, the recorded snapshot 
state SSS corresponds to the state S1′ that is reachable from the initial state S0, although 
this behavior was not observed in our example! Additionally, state S3 that was a part of the 
observed behavior is reachable from the recorded snapshot state S1′.

It follows from Figure 8.6 that if we could alter the course of the computation so that 
(j receives M′) precedes (i receives M), then the recorded state would be reachable from the 
initial state S0. The unpredictability of the scheduling order of concurrent actions led to 
the anomaly. This is in tune with the swapping argument used in the proof of Theorem 8.1. 
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Recorded state SSS

FIGURE 8.6 A partial history of the system in Figure 8.5.
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The colors of the four actions in the state transitions S0→S1→S2→S3→S0 are r(i), w(j), r(i), r(j), 
respectively. Using the notions of equivalent computation, this can be transformed into a 
sequence w(j), r(i), r(i), r(j) (by swapping the first two actions since by Lemma 8.1, no red 
message can be received in a white action). This alters the computation to S0→S1′→S2→S3→S0, 
and the recorded global state SSS will indeed be the same as S1′. These observations can be 
summarized as follows:

CL1: Every snapshot state recorded by the Chandy–Lamport algorithm is reachable from 
the initial state through a feasible sequence of actions. However, there is no guarantee 
that this state will actually be attained during a particular computation.

CL2: Every final state that is reachable from the initial state is also reachable from the 
recorded snapshot state through a feasible sequence of actions.

Due to the second property, a malfunctioning distributed system can be reset to a con-
sistent snapshot state SSS without altering the future course of the distributed system. 
Following such a reset action, the system has the potential to catch up with the expected 
behavior via a feasible sequence of actions.

Despite such anomalies, SSS indeed represents the actual global state, when the final 
state of the system corresponds to a stable predicate. A predicate P is called stable if once 
P becomes true, it remains true thereafter. This is different from nonstable predicates that 
may be true at a certain time, but change to false thereafter. Some examples of stable predi-
cates are as follows: (1) the system is deadlocked and (2) the computation has terminated.

8.4 LAI–YANG ALGORITHM
Lai and Yang [LY87] proposed a modification of Chandy–Lamport’s algorithm for distrib-
uted snapshot on a network of processes where the channels need not be FIFO. To under-
stand Lai and Yang’s modification, let us once again color the messages white and red: a 
message is white if it is sent by a process that has not recorded its state, and a message is red 
if the sender has already recorded its state. However, unlike Chandy–Lamport’s algorithm, 
there are no markers—processes record their local states spontaneously and append this 
information as a Boolean flag (red or white) with any message they send. We will represent a 
message by (m, c) where m is the underlying message and c is the Boolean flag red or white.

The cornerstone of the algorithm is the condition Lemma 8.1: no red message is received 
in a white action. To make it possible, if a process that has not recorded its local state 
receives a message (m, red) from another process that has done so, then it first records its 
own state (this changes its color to red and the color of all its subsequent actions to red) and 
then accepts the message. No other action is required to make the global state consistent. 
The algorithm can be stated as follows:

LY1: The initiator records its own state. When it needs to send a message m to another 
process, it sends (m, red).

LY2: When a process receives a message (m, red), it first records its state if it has not 
already done so and then accepts the message m.
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The approach is lazy inasmuch as processes do not send or use any control message for 
the sake of recording a consistent snapshot—the activity rides the wave of messages of the 
underlying algorithm. The good thing is that if a complete snapshot is taken, then it will 
be consistent. However, there is no guarantee that a complete snapshot will eventually be 
taken: if a process i wants to detect termination, then i will record its own state following its 
last action, but send no message, so other process may not record their states! To guarantee 
that eventually a complete and consistent snapshot is taken, dummy control messages may 
be used to propagate the information that some process has already recorded its state.

8.5 DISTRIBUTED DEBUGGING
A common problem of interest in the design and analysis of many distributed systems is to 
decide whether the global state will ever satisfy a predefined predicate ϕ. Such a question 
may have safety implications: for example, in an industrial control system, a state in which 
certain parameters attain predefined values can potentially lead to a hazard. In a traffic 
control network, certain combination of traffic signal values can lead to traffic congestion 
or a potential collision between vehicles. In a network protocol, certain global states may 
cause a safety breach. Observing and analyzing such potential threats are challenging due 
to two reasons: (1) the size of the state space of even a small-sized distributed system can 
be enormous and (2) the inherent nondeterminism prevents us from freely exploring the 
state space. Ideally, to identify a bug, any execution leading the system to the buggy state 
must be repeatable. Nondeterminism prevents us from exercising that kind of control in 
state exploration. Note that debugging encompasses both stable and unstable predicates.

The history of a distributed system can be represented by a lattice as shown in Figure 8.7. 
Assume that there is an observer (also called a monitor) who is observing the computations 
in the system. An observer is an external process* that receives notifications from every 
internal process (about the next state) whenever they execute an action. The observer has 

* So, it is a centralized instrumentation tool.
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FIGURE 8.7 Illustration of distributed debugging. (a) Two communicating processes 0 and 1 
updating variables x and y. (b) In the lattice of states, Sij denotes a consistent global state after i 
actions by P and j actions by process Q. Inconsistent states are left out.
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the following tasks: (1) determine which set of local states form a consistent snapshot, and 
construct the lattice of consistent states and (2) figure out if the predicate ϕ(S) = true for 
one or more snapshot states S.

8.5.1 Constructing the State Lattice

For this task, we use vector time stamps. Each event is labeled with its vector clock. Each pro-
cess reports these events, along with their local sequence numbers and vector time stamps, 
to the monitor. The monitor receives them in some arbitrary order. In a set of n processes 
V = {0, 1, 2, …, n − 1}, let VC(ei) be the vector time stamp of event ei in process i  leading to its 
local state s(i) and VC(ej) be the vector time stamp of event ej in process j leading to its local 
state s(j). Then, s(i) and s(j) belong to some consistent global state iff one of them is (0, 0), or

 ∀ ∈i j V VC e VC ei i i j, : ( ) ( )∼

Using this criterion, the monitor threads together a set of consistent global states as the 
nodes of a lattice. It also identifies the global state transitions by defining an edge from 
global state S to S′ iff S′ can be reached from S via a single action by some process. Figure 8.7 
illustrates an example: part (a) shows a pair of communicating processes updating a pair 
of variables x and y and part (b) shows the corresponding state lattice. Cut 2 is consistent 
because the time stamps (3, 0) (of event e0 from process 0) and (0, 1) (of event e1 from pro-
cess 1) satisfy the conditions VC0(e0) ≥ VC0(e1) and VC1(e1) ≥ VC1(e0). Cut 1 is inconsistent 
since VC(e0) = (1, 0) and VC(e1) = (3, 2), which means VC0(e0) < VC0(e1). Inconsistent global 
states are excluded from the lattice.

Any traversal from the initial state S00 via the directed edges of the lattice defines a feasi-
ble computation. In the context of these computations, we evaluate the predicates of interest.

8.5.2 Evaluating Predicates

For debugging, let ϕ be a predicate of interest. Three kinds of queries about ϕ are often 
considered useful—possibly ϕ, definitely ϕ, and never ϕ:

Possibly ϕ: For a system, “possibly ϕ” holds if there exists at least one consistent global 
state S that is reachable from the initial global state, such that ϕ(S) = true. This means 
that if there are many observers, then at least one of them may observe ϕ, although 
many others may not be able to observe it.

Definitely ϕ: This is different from “definitely ϕ” that signifies that all computations from 
the given initial state pass through some consistent global state S for which ϕ(S) = true. 
This means every observer must be able to observe ϕ. Clearly, definitely ϕ ⇒ possibly ϕ.

Never ϕ: For a system, the predicate “never ϕ” is true if no computation from the given 
initial state passes through a consistent global state S for which ϕ(S) = true.

In Figure 8.7, let ϕ ≡ x + y = 12. This predicate is true only at the global state S21 (i.e., after 
the second event of process 0 and the first event of process 1). Since there exists at least one 
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computation (but not all) that passes through S21, the condition possibly ϕ holds. However, 
for another predicate ϕ ≡ x + y > 15, the stronger condition definitely ϕ holds, since ϕ is 
true in global state S32 and all computations pass through this S32. Finally, for the predicate 
ϕ ≡ x = y = 5, the condition never ϕ holds since none of the two global states S40 and S22 for 
which the predicate holds is consistent.

Distributed debugging using this approach uses a thorough state exploration that has 
a large time complexity—with n processes each having m actions, the time complexity of 
debugging is O(mn). Thus, scalability is a concern.

8.6 CONCLUDING REMARKS
The distributed snapshot algorithm clarifies what constitutes the global state of a distrib-
uted system when the clocks are not synchronized or processes do not have clocks. Several 
incorrect algorithms for distributed deadlock detection in the published literature have 
been attributed to the lack of understanding of the consistency of a global state.

An alternative suggestion is to freeze the entire system, record the states of the processes, 
and then resume the computation. However, a global freeze interferes with the ongoing com-
putation and is not acceptable in most applications. Additionally, any algorithm for freezing 
the entire system requires the propagation of a freeze signal across the system and will be han-
dled in a manner similar to the marker. The state recording algorithm should wait for all the 
computations to freeze and all the channels to be empty, which will rely upon a termination 
detection phase. Clearly, this alternative is inferior to the solution proposed in this chapter.

The snapshot algorithm captures the fragments of a consistent global state in the various 
component processes. It requires another broadcast algorithm (or state collection algo-
rithm) to put these fragments together into a consistent global state and store it in the state 
space of the initiator.

8.7 BIBLIOGRAPHIC NOTES
Chandy–Lamport algorithm is described in [CL85]. In a separate note [D84], Dijkstra ana-
lyzed this algorithm and provided an alternative method of reasoning about the correct-
ness. The proof presented here is based on Dijkstra’s note. The algorithm due to Lai and 
Yang appears in [LY87]. Mattern’s article [M89] summarizes several snapshot algorithms 
and some improvisations. Marzullo and Neiger [MN91] proposed the monitor-based 
approach for distributed debugging.

EXERCISES
8.1 Consider the Chandy–Lamport distributed snapshot algorithm running on a  network 

whose topology is G = (V, E), where V is the set of nodes representing processes and E 
is the set of directed edges (representing channels) connecting pairs of processes. Let 
n = |V|. Prove that in the snapshot  the states of (n – 1) channels will always be empty. 
Also, compute the message complexity when G is strongly connected.

8.2 Construct an example to show that Chandy–Lamport distributed snapshot algorithm 
does not work when the channels are not FIFO.
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8.3 In Figure 8.8, show all the consistent cuts that (a) include event d and (b) exclude 
event d but include event g.

8.4 Extend Chandy–Lamport algorithm so that it can be used on a network whose 
 topology is a directed acyclic graph. Discuss any limitations of the extended version.

8.5 Assume that the physical clocks of all the processes are synchronized and channel 
propagation delays are known. Suggest an alternative algorithm for computing a 
 distributed snapshot based on the physical clock and the channel delays.

8.6 (Programming exercise) Sunrise Bank wants to find out its cash reserve, so it initiates 
an audit in all of its branches. At any moment, a sum of money may be in transit from 
one branch of the bank to another. ATM transactions, customer transactions through 
bank tellers, and interbranch transactions are the only possible types of transactions.

Define two teller processes T1 and T2 at two different branches and three ATM 
processes A1, A2, and A3, each with a predefined amount of cash. Assume that four 
customers have an initial balance of a certain amount in their checking accounts. Each 
user can deposit money into or withdraw money from their accounts through any ATM 
or a teller. In addition, any customer can transfer an amount of available cash from her 
account to any other customer, some of which may lead to interbranch transfers.

Use Lai–Yang algorithm to conduct an audit of Sunrise Bank. Allow the users to 
carry out transactions at an arbitrary instant of time. The audit must reveal that at 
any moment, total cash = initial balance + credit − debit regardless of when and where 
users transact money.

8.7 While distributed snapshot is a mechanism for reading the global state of a system, 
there are occasions when the global state is to be reset to a new value. An example is a 
failure or a coordination loss in the system. As with the snapshot algorithms, we rule 
out the use of freezing the network.

Explore if the Chandy–Lamport algorithm can be adapted for this purpose by 
replacing all reads by writes. Thus, when a process receives a marker, it will first reset 
its state and then send out the marker in one indivisible action.

8.8 You have been hired to lead to a project that measures how busy the Internet is. As a 
part of this project, you have to measure the maximum number of messages that in 
transit at a time in the Internet. Assuming that all machines on the Internet and their 
system administrators agree to cooperate with you, suggest a plan for measurement.

0

1
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j ki l

b c d e

FIGURE 8.8 The events in a system of three processes numbered 0, 1, and 2.
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8.9 The Chandy–Lamport only helps record fragments of the global state. In the next 
phase, these fragments have to be collected to form a meaningful global state. Instead 
of making it a two-phase process, explore the possibility of computing the global state 
of a distributed system in a single phase using a mobile agent.

Assume that the topology is strongly connected and the edges represent FIFO 
channels. The initiator will send out a mobile agent with a briefcase that will store 
its data. The briefcase has a variable S—it is an array of the local states of the various 
processes. Before the agent is launched, ∀i: S[i] = undefined. At the end, the agent will 
return to the initiator, and S will represent a consistent global state (Figure 8.9).

8.10 In this system, consider the three predicates:

 

φ

φ

φ

1 3

2 12

3 10
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≡ + =
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x y

x y

x y

For each predicate, determine if it is possibly true, or definitely true, or never true. 
Briefly justify your answer.

m

S

T

x :=1 x := 4 x := 9

y := 1 y := 2 y := 8

FIGURE 8.9 A pair of communicating processes S and T.
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C h a p t e r  9

Global State Collection

9.1 INTRODUCTION
In a distributed system, each process executes actions on the basis of local information that 
consists of its own state and the states of its neighbors or messages through the incoming 
channels. Many applications need to find out the global state of the system by collecting the 
local states of the component processes. These include

• Computation of the network topology

• Counting the number of processes in a distributed system

• Detecting termination

• Detecting deadlock

• Detecting loss of coordination

The distributed snapshot algorithm (Chapter 8) clarifies the notion of a consistent 
global state and helps record the fragments of a consistent global state into the local 
state spaces of the individual processes but does not address the task of collecting these 
fragments. In this chapter, we address this issue and present several algorithms for 
global state collection.

The algorithms for global state collection have been classified into various types: probe-
echo, wave or PIF algorithm, heartbeat algorithm, etc. The classification is usually based 
on the mechanism used to collect the states, and the classes are not mutually exclusive. 
For example, wave algorithms refer to a class of computations, in which an initiator starts 
a computation that triggers more actions in the adjacent noninitiator nodes, and in a 
bounded time, each node in the system reaches local termination when a predefined goal 
is reached. The resulting causal chain of events resembles the growth and decay of waves in 
a still pond—hence the name wave algorithm.



170   ◾   Distributed Systems: An Algorithmic Approach

We will study a few algorithms that follow the various paradigms without paying much 
attention to the class to which they belong. We begin with the description and correctness 
proof of an elementary broadcasting algorithm, where the underlying message-passing 
model supports point-to-point communication only.

9.2 ELEMENTARY ALGORITHM FOR ALL-TO-ALL BROADCASTING
Consider a strongly connected network of n processes 0, 1, 2,…, n−1. Each process i has a 
stable value s(i) associated with it. The goal is to devise an algorithm by which every pro-
cess i can broadcast its value s(i) to every other process in this system, so that at the end, 
each process i will have a set Vi = {s(k): 0 ≤ k ≤ n − 1} of values. We will use a message-
passing model.

Initially, ∀i:Vi = s(i). To complete the broadcast, every process i will periodically (1) send 
its current Vi to each of its outgoing channels and (2) receive the values from its incom-
ing channels to update Vi. A naive approach for broadcasting is flooding, where each 
process sends its value to all neighbors, the neighbors send that value to their neighbors, 
and so on. This approach is very inefficient in terms of message complexity, and control-
ling the termination is also a matter of concern. The following algorithm addresses both 
these issues.

To save unnecessary work, it makes little sense to send Vi, if it has not changed 
since the last send operation. Furthermore, even if Vi has changed since the last send 
operation, it suffices to send the incremental change only—this will keep the message 
size small.

To accomplish this, we associate two sets of values with each process i—the set Vi will 
denote the current set of values collected so far, and the set Wi will represent the last value 
of Vi sent along the outgoing channels so far. Let (i, j) represent the channel from process i 
to process j. The algorithm terminates when no process receives any new value and every 
channel is empty. The program for process i is given as follows:

program broadcast (for process i}
define Vi, Wi: set of values;
initially Vi = {s(i)}, Wi = Ø {and every channel is empty}

1 do Vi ≠ Wi → send Vi\Wi to every outgoing channel;
   Wi:= Vi
2 [] ¬empty (k,i) → receive X from channel (k,i);
   Vi:= Vi ∪ X
od

Correctness proof
To prove the correctness, we first establish partial correctness and then prove termination. 
For partial correctness, we demonstrate that when all the guards are false, every process 
must have collected the value s(i) from every other process i.
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Lemma 9.1

empty(i, k) ⇒ Wi ⊆ Vk

Proof (by induction):

Basis: Initially, Wi = ∅ and Vi = s(i), so Wi ⊆ Vk holds.

Induction hypothesis: Assume Wi ⊆ Vk holds after process i executes the first statement 
r times and channel (i, k) becomes empty. We will show that Wi ⊆ Vk holds after pro-
cess i executes the first statement (r + 1) times and (i, k) becomes empty.

Induction step: Between two consecutive executions of statement 1, statement 2 must be 
executed at least once. Let V Wi

r
i
r,  denote the value of Vi and Wi after process i exe-

cutes statement 1 r times. After process i executes statement 1 for the (r + 1)th time, 
the set of messages sent down the channel ( , ) \i k V Wi

r
i
r= +1  (Figure 9.1).

When every message in (i, k) is received by process k (statement 2), channel (i, k) becomes 
empty. This implies that V W Vi

r
i
r

k
+ ⊆1 \ . However, from the induction hypothesis, 

W Vi
r

k⊆ . Therefore, V Vi
r

k
+ ⊆1 . Also, since V Wi

r
i
r+ +=1 1, W Vi

r
k

+ ⊆1  holds. ◾

Lemma 9.2

If algorithm broadcast terminates, then ∀i: Vi = {s(k): 0 ≤ k ≤ n − 1}.

Proof: When the first guard is false for each process, ∀i: Wi = Vi holds. When the second 
guard is false for each process, all channels are empty, and from Lemma 9.1, Wi ⊆ Vk 
where k is a neighbor of i. Therefore, Vi ⊆ Vk.

Now consider a directed cycle C that includes processes i and k. If for every pair of 
processes across a channel (i, k) the condition Vi ⊆ Vk holds, then for ∀i, k ∈ C: Vi = Vk 
must be true. Furthermore, in a strongly connected graph, every pair of processes (i, j) is 
contained in a directed cycle; therefore, the condition Vi = Vj must hold for every pair of 
processes (i, j) in the system. Also, since s(i) ∈ Vi, and no element is removed from a set, 
finally, ∀i: Vi = {s(k): 0 ≤ k ≤ n − 1}. ◾

Vi

Wi

Vk

Wk(i, k)

i k

FIGURE 9.1 Two processes, i and k, connected by a channel.
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Theorem 9.1

Algorithm broadcast terminates in a bounded number of steps.

Proof: Let c0,c1,c2,…,cm−1 denote the m channels in the network. Consider the following 
variant function that is a tuple of sets:

 Y V V V V c c c cn m= ( )− −0 1 2 1 0 1 2 1, , , , , , , , ,… …

Initially, Y = (s(0), s(1), s(2),…, s(n−1), ∅, ∅, ∅,…,∅). After each execution of statement 1 
by an eligible process, the content of some channel (in the second part of Y) grows in size. 
After the execution of statement 2 by some eligible process k, the set Vk (in the first part 
of Y) grows in size and all the input channels of process k become null. In either case, 
whenever an eligible process executes an action, the value of the Y grows in the lexico-
graphic order. This growth is bounded since by Lemma 9.2, finally, Vi = {s(k): 0 ≤ k ≤ n − 1} 
holds. Therefore, the algorithm terminates in a bounded number of steps. ◾

The worst-case message complexity can be computed as follows: a process i sends some-
thing out only when Vi changes. Starting from the initial value s(i), Vi can change at most 
(n−1) times. Also, since each node can have at most (n−1) neighbors, each execution of 
statement 1 sends at most (n−1) messages. Thus, a process can send at most (n−1)2 mes-
sages. So the message complexity is O(n2) per process or O(n3) for the entire system.

9.3 TERMINATION-DETECTION ALGORITHMS
Consider a computation running on a network of processes whose topology is G = (V, E). 
One possible mechanism of distributing the computation to the various processes is as fol-
lows: The task is initially assigned to some node i ∈ V that will be called an initiator node. 
The initiator delegates various parts of this task to its neighbors, which delegate parts of 
their work to their neighbors, and so on. As the computation makes progress, these nodes 
exchange messages among themselves. No one has knowledge about the entire topology of 
the network, but every node knows about its local neighborhood.

A node, when viewed in isolation, can remain in one of the two states: active and passive. 
A process is active when it has some enabled guards. A process that is not active is called 
passive. If a process is in a passive state at a certain moment, then it does not necessarily 
mean that the process will always remain passive—a message sent by an active neighbor 
may wake up the process and make it active. An active process, on the other hand, eventu-
ally switches to a passive state when it has executed all its local actions—these actions may 
involve the sending of zero or more messages.

In this setting, an important question for the initiator is to decide whether the present 
computation has terminated. Termination corresponds to the following three  criteria: 
(a) every process is in a passive state, (b) all channels are empty, and (c) the global state 
of the system satisfies the desired postcondition. Note that the criteria for termination are 
similar to those for deadlock, with the exception that in deadlock, the desired postcondition 
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is not satisfied. Both termination and deadlock reflect quiescent conditions, and it is qui-
escence detection that we are interested in. The proposed detection method does not guar-
antee that the desired postcondition has been reached.

The network of processes participating in the computation forms a computation graph. 
An example is shown in Figure 9.2. The computation graph is a directed graph: if node i 
engages a neighboring node j by delegating a subtask, then we draw a directed edge from 
i to j. Messages propagate along the direction of the edges. Let us use colors to distinguish 
between active and passive processes: a process is white when it is passive, and black when it is 
active. In Figure 9.2a, only 1 and 2 are active. In Figure 9.2b, 1 has turned passive, but 2 and 3 
are active. In Figure 9.2c, 2 turned passive, 4 turned passive after being active for a period, but 
5 became active, and 5 is trying to engage 2. The picture constantly changes. Per our assump-
tion, the computation is guaranteed to terminate, so eventually all nodes turn white, and all 
channels become empty. It is this configuration that the initiator node 1 wants to detect.

To see why termination detection is important, remember that many computations in 
distributed systems run in phases. Each phase of a computation runs over multiple pro-
cesses in the system, and to launch phase (i + 1), the initiator has to ascertain that phase i 
has terminated for every process.

9.3.1 Dijkstra–Scholten Algorithm

In [DS80], Dijkstra and Scholten presented a signaling mechanism that enables the initia-
tor to determine whether the computation running on a network of processes has termi-
nated. The computation initiated by a single initiator and spreading over to several other 
nodes in the network is called a diffusing computation, and its termination is reported to 
the initiator as a single event. The signaling mechanism is superposed on the underlying 
computation and is noninvasive in as much as it does not influence the underlying compu-
tation. We follow the original treatment in [DS80].
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FIGURE 9.2 A computation graph with active (black) and passive (white) processes. (a) 1 engaged 
2 and both are active, (b) 1 turned passive but 2,3 are active, (c) 1,4 became passive, but 5 is active 
and is trying to engage 2.
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There are two kinds of messages in the network: signals propagate along the direction of the 
edges, and acks propagate in the opposite direction. The initiator is a special node (called the 
environment node) that has no edge directed toward it. Every other node is called an internal 
node and is reachable from the environment node via the edges of the underlying network.

For each directed edge (i, j), call node j a successor of node i and node s a predecessor of 
node j. The overall plan is as follows: The environment node initiates the computation by 
sending signals that engage its successors—this also initiates the termination- detection pro-
cess. An internal node that receives a signal may send out signals to engage its successors. 
In this way, the computation spreads over a finite number of nodes in the network, and the 
computation graph grows. Eventually, each node sends acks to a designated predecessor to 
confirm the termination of the computation in the subgraph below it, and the computation 
subgraph shrinks. When the environment node receives acks from each of its successors, it 
detects the termination of the entire computation, and the computation subgraph becomes 
empty. The crucial issue here is to decide when and to whom to send the acks.

For an edge (i, j), the difference between the number of signals sent by i and the number 
of acks received from j will be called a deficit. A process keeps track of two different types 
of deficits:

C = total deficit along its incoming edges

D = total deficit along its outgoing edges

By definition, these deficits are nonnegative integers—no node sends out an ack before 
receiving a signal. This leads to the first invariant:

 INV1 C D. ≥( ) ∧ ≥( )0 0

Initially, for every node, C = 0 and D = 0. The environment node initiates the computation 
by spontaneously sending a message to each of its k(k > 0) successors, so for that node, 
C = 0 and D = k. For every other node in the system, the proposed signaling scheme [DS80] 
preserves the following invariant:

 INV2 C D. >( )∨ =( )0 0

INV2 is the cornerstone of the proposed algorithm. An internal node sends out signals 
only after it receives a signal from a predecessor node. This increases D for the sender, but 
it does not affect INV2 as long as C > 0. The sending of an ack, however, reduces the sender’s 
deficit C by 1—therefore, to preserve both INV1 and INV2, an ack is sent when the follow-
ing condition holds:

 

C C D INV1 INV2

C C D

− ≥( ) ∧ − > ∨ =( ) { }
= >( )∨ ≥ ∧ =(

1 0 1 0 0

1 1 0

follows from and

))
= >( )∨ = ∧ =( )C C D1 1 0  (9.1)
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This implies that an internal node returns an ack when its C exceeds 1 or when C = 1 and 
D = 0, that is, it has received acks from each of its successors (and, of course, the local com-
putation at that node has terminated).

The proposed signaling scheme guarantees that the computation graph induced by 
the edges with positive deficits is a rooted spanning tree with the environment node as the 
root. The parent of an internal node is the first node from which it received a signal. The 
root does not have a parent. When a leaf node of this tree becomes passive, it sends an ack 
to its parent. This removes the node as well as the edge connecting it to its parent, and the 
tree shrinks. Again when an active node sends a message to a passive successor, the pas-
sive node becomes active, and the tree grows. By assumption, the underlying computation 
terminates. So during the life of the underlying computation, the computation graph may 
expand and contract a finite number of times and eventually becomes empty. This signals 
the termination of the underlying algorithm.

Initially for each internal node i, parent(i) is set to i. Equation 9.1 leads to the following 
program for each internal node:

program detect {for an internal node i}
define C, D : integer
 m: (signal, ack) {represents the type of message received}
 state: (active, passive)
initially C = 0, D = 0, parent(i) = i
do (m = signal) ∧ (C = 0) → C := 1; state := active;
  parent := sender
  {Read Note 1}
[] m = ack → D := D − 1
[] (C = 1 ∧ D = 0) ∧ (state = passive) → send ack to parent; 
  C:= 0; parent(i) = i
  {Read Note 2}
[](m = signal) ∧ (C = 1) → send ack to the sender
od  {Read Note 3}

Note 1: This node can send out messages to engage other nodes (which increases its D) 
or may turn passive. It depends on the computation.

Note 2: This node now returns to the initial state and disappears from the computation 
graph.

Note 3: This represents the action of sending an ack when C > 1 (see Equation 9.1).

By sending an ack to its parent, a node i provides the guarantee that all nodes that were 
engaged by i or its descendants are passive and no message is in transit through any channel 
leading to these descendants. The aforementioned condition will remain stable until node i 
receives another signal. A leaf node does not have any successor, so it sends an ack as soon 
as it turns passive. The environment node initiates the termination-detection algorithm by 
making D = k (k > 0) and detects termination by the condition D = 0 after it receives k acks.
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The last statement of the program needs some clarification. A node with C = 1 can 
receive a signal from a node, but it promptly sends an ack since the computation graph 
induced by the edges with positive deficits must always be a tree. Thus, in Figure 9.2c, 
if node 5 sends a signal to node 2, then node 2 becomes active but rejects the signal by 
sending an ack to 5 as a refusal to accept 5 as its parent, and the deficit on the edge (5, 2) 
remains 0. Thus, the computation graph remains a tree consisting of the nodes 1, 2, 3, 4, 5 
and the edges (1, 2), (2, 3), (3, 4), (4, 5).

Dijkstra–Scholten algorithm is an example of a class of algorithms called probe-echo 
 algorithm: The signals are the probes, and the acks are the echoes. One can use the basic 
messages from parents to their children as signals—the only control signals will be the acks. 
As the computation spreads over various nodes, the edges with positive deficits form a span-
ning tree that grows and shrinks. Due to the nondeterministic nature of the computation, 
different runs of the algorithm may produce different spanning trees. The number of acks 
will never exceed the number of messages exchanged by the underlying algorithm. This is 
because, for each message between nodes, an ack is generated. If the underlying computation 
fails to terminate (which violates our assumption), then the termination-detection algorithm 
will also not terminate. Note that the algorithm is not designed to report nontermination.

Complexity issues: Since the basic messages of the underlying computation are used as 
signals, and finally the deficits along all the edges must be zero, the number of control 
messages (i.e., acks) must equal the number of basic messages of the underlying computa-
tion. Chandrasekaran and Venkateshan [CV90] proved a lower bound that if the algorithm 
starts by sending out signals after the actual termination of the underlying computation, 
then it is possible to detect termination using only O(|E|) messages—each edge will carry 
one signal and one ack. However, since the initiator does not correctly guess the time to 
reach termination, the lower bound will not be actually attained. Moreover, to avoid false 
detection, this scheme requires the edges to be FIFO.

The termination-detection algorithm can be easily modified to collect global states or 
computing other kinds of global predicates. For example, consider the problem of counting 
the number of processes in a network. If (1) the underlying computation is null, (2) the ack 
from each process k to its parent is tagged with an integer variable size(k), the number of 
processes in the subtree under it, and (3) each parent i, after receiving the acks from all of 
its children, forwards the count

 
size i size j

j i parent j

( ) : ( )
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to its parent; then at the initiator node 0, 1 + size(0), will be the count of all the processes 
in the system.

9.3.2 Termination Detection on a Unidirectional Ring

Another class of termination-detection algorithms uses token passing (instead of probes 
and echoes) to detect termination. The main idea is as follows: Consider a distributed com-
putation running on a strongly connected directed graph. An initiator node sends out 
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a token to traverse the network and observe the states of the processes. Each node, after 
turning passive, forwards the token to the next process. When the token returns to the ini-
tiator, it contains useful information about whether the computation has terminated. We 
present here such an algorithm due to Dijkstra et al. [DFG83]. The algorithm is presented 
for a unidirectional ring that is embedded on the topology of the given network—the order 
of the processes in the ring is used to decide the order in which the token traverses the net-
work. Assume that in a system of n processes 0, 1, 2,…, n − 1, the embedded ring is speci-
fied by 0→n−1→n−2→⋯2→1→0. The ring topology has no connection with the sending 
and receiving of messages by the underlying algorithm—so a message can be sent by one 
process to another as long as a path exists, even if they are not neighbors in the embed-
ded ring. All communication channels have zero delay, that is, message communication 
is assumed to be instantaneous. This also implies that messages are received in the order 
they are sent.

Without loss of generality, assume that process 0 is the initiator of termination detec-
tion (Figure 9.3). The initiator initiates termination detection by sending out a token—it 
traverses the network and eventually returns to the initiator. A process k accepting the 
token will not forward it to its ring successor k − 1 mod n until it becomes passive. When 
the initiator receives the token back, one may apparently believe that it detects termination.

However, this is too simplistic and is not foolproof. What if the token is currently with 
process k, but a process j (n − 1 > j > k) that was passive now becomes active by receiving 
a message from some process l (k > l > 0)? This could lead to a false detection, since the 
activation of process j will go unnoticed!

To prevent such a false detection, refine the scheme by assigning the colors white and 
black to processes and the token. Initially, all processes are white, and the initiator sends a 
white token to process (n − 1). Define the following two rules:

Rule 1: When a noninitiator process sends a message to a higher numbered process, it 
turns black.

Rule 2: When a black process sends a token, the token turns black. If a white process 
forwards a token, then the token remains white.

0

n–1
n–2

2
1

m

Token

FIGURE 9.3 A ring of n processes: process 0 is the initiator. Process n − 2, after turning passive and 
releasing the token to its successor, received the message m from 2.
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With these modifications, when the initiator receives a white token, termination is cor-
rectly detected. The scenario described earlier will now return a black token to the initia-
tor (in Figure 9.3, process 2 turns black and transforms the white token into a black token), 
making the decision inconclusive. A fresh round of token circulation will be necessary.

If indeed all processes turn passive during the next traversal of the token, then a white 
token will return to process 0. However, a process like 2 needs to change its color to white 
before the next traversal begins. This leads to the last rule:

Rule 3: After sending a token to its ring successor, a black process turns white.

The final program is as follows:

program term {for process i > 0}
define color, token: (black, white) {colors of process and token}
 state : (active, passive)
do (token = white) ∧ (state ≠ passive) → skip
[] (token = white) ∧ (state = passive) →
 if color(i) = black → color(i) := white; send a black token
 [] color(i) = white → send a white token
 fi
[] (token = black) →send a black token
[] i sends a message to a higher numbered process → color(i) := 

black
od

{for process 0}
send a white token;
do (token ≠ white) → send a white token od
{Termination is detected when process 0 receives a white token}

Theorem 9.2

Algorithm term is a correct termination-detection algorithm.

Proof: Assume that process 0 receives a white token. It means that

• Process 1 received a white token
• Process 1 is passive
• Process 1 did not send any message to process j, (1 < j < n − 1)

Since process 1 received a white token, it means that

• Process 2 received a white token
• Process 2 is passive
• Process 2 did not send any message to process j, (2 < j < n − 1)
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Continuing these arguments, one can easily conclude that process 0 receives a white token 
when processes 1 . . n − 1 are all passive and none of them sent a message. This is a stable 
condition since processes 1 . . n − 1 cannot receive a message anymore. This corresponds 
to the termination of the computation. If some process i (i ≠ 0) activates process 0 in the 
mean time, then process 0 will eventually turn passive and initiate a new round of token 
circulation until it receives a white token. ◾

Note 1: Since the underlying algorithm is guaranteed to terminate, the termination-
detection algorithm will also terminate.

Note 2: The assumption about instantaneous message communication is a strong one but 
nevertheless necessary for correctness. To see why, assume that in Figure 9.3, the message 
m takes a very long time to reach its destination. In the mean time, the black token reaches 
the initiator, who initiates a fresh round of token circulation, while m is still in transit. 
Eventually, process 0 receives a white token back and declares termination. But clearly, this 
is false, since it will be negated when m will reach process (n − 2)!

Complexity issues: Let t be the number of messages in the underlying computation. Once 
the initiator node starts the termination-detection algorithm by sending out a white token, 
each of the m messages can potentially turn the white token into a black one. Therefore, the 
maximum number of control messages is n . t.

9.3.3 Credit-Recovery Algorithm for Termination Detection

A slightly different approach to termination detection has been taken in Mattern’s credit-
recovery algorithm. In this algorithm, there is an initiator process that is the custodian 
of a total credit share of 1 unit. The state of a process alternates between active and pas-
sive. While sending messages, credit shares get distributed across processes in the network 
according to some predefined rules. The activated processes eventually return their credit 
shares to its initiator. By definition,

• For each active process i, credit(i) > 0.

• For each passive process i, credit(i) = 0.

Termination is detected when the initiator has recovered the entire credit sum from the 
system of processes. The algorithm assumes that every process has a direct link with the 
initiator, so that at an appropriate time, any process can return its credit share directly to 
the initiator.

When one active process sends a message to another, it transfers a fraction of its credit 
to the activated process through the activation message. Thus, each activation message 
and each active process has a positive credit associated with it. When the initiator recov-
ers the entire credit, it clearly implies that there is neither any active process nor any 



180   ◾   Distributed Systems: An Algorithmic Approach

activation message in transit—this testifies the soundness of the approach. The rules for 
credit distribution and credit recovery are as follows:

Rule 1: An active process with credit X, while sending a message to another process, 
transfers a credit of Y = X/2 to it via the message. If the sender process sends the acti-
vation message immediately before becoming passive, it may also transfer its whole 
credit X with the activation message.

Rule 2: When a message with credit share Y arrives at a passive process, it becomes active 
and the credit share Y is transferred to the activated process.

Rule 3: When an active process receives a message with credit share Y, it remains active 
and Y is returned to the initiator. The algorithm assumes that each process has a 
direct communication channel with the initiator.

Since the credit shares are transferred from one process to another by piggybacking on the 
basic messages, the only control messages here are those that return the credit shares back 
to the initiator. It is easy to observe that the number of control messages equals the number 
of messages in the underlying computation. Thus, the message complexity is no better than 
of the Dijkstra–Scholten termination-detection algorithm. However, by modifying Rule 3, 
it is possible to reduce the message complexity. Consider the following modification:

Rule 3′: When an active process receives a message with credit share Y, it remains active 
and the credit share Y is added to the share of the recipient.

With this modification, the only time credits are returned to the initiator is when a process 
spontaneously turns passive from an active state. Accordingly, the message complexity of a 
typical computation is much lower. Another issue is the problem of bookkeeping with the 
fractional credits. While splitting a credit, it is not always possible to represent the fraction 
by a variable of limited precision. Mattern suggests a way to tackle this is by specifying the 
credit X as c = −log2 X. For further details, see [M89a].

9.4 WAVE ALGORITHMS
Various ideas for predicate detection or decision making based on state exploration have 
been proposed since Dijkstra–Scholten termination-detection algorithms were pub-
lished—most of these are variations or generalizations of the basic ideas described in the 
previous section. One such generalization is wave algorithms.

An initiator process spontaneously starts a wave algorithm by executing a local action that 
triggers actions in the neighboring noninitiator nodes, which triggers further actions in their 
neighbors. The resulting computation is called a wave, and it satisfies the following criteria:

• Each computation is finite.

• Each computation contains at least one decision event.

• A decision event is causally preceded by some event at each process.
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As an example, consider broadcasting a message M to every process in a unidirectional 
ring. The initiator sends out the message to its neighbor, who forwards it to its neighbor, 
and so on. When the initiator receives M, it stops forwarding M further, and the wave ends. 
This is a decision event, following which the initiator may initiate another wave to accom-
plish a different task. Here are a few examples of wave algorithms:

 1. Barrier synchronization: Consider a distributed computation that runs in phases. An 
initiator process starts phase 0, and all other processes execute phase 0 thereafter. 
The constraint is as follows: no process starts phase i (i > 0) unless every process has 
completed its phase (i − 1). Here, the decision event is the end of a phase.

 2. Depth-first search (DFS): Consider searching an object in a network of processes. An 
initiator initiates the search, and it ends with a decision event reporting to the initia-
tor if the object was found or not.

 3. Propagation of information with feedback (PIF) [S83]: PIF is a method for broadcast-
ing a message to every node of a connected network and receiving a confirmation 
that every process received the broadcast. Such a mechanism can be used to wake up 
other nodes or start the execution of a new protocol at every node of a network. In the 
following, we present an example of a PIF from Segall’s paper [S83].

9.4.1 Propagation of Information with Feedback

Consider a connected network G = (V, E), where V is a set of nodes and E is a set of bidirec-
tional edges. An initiator node i ∈ V wants to broadcast a message M to every node of the 
network and receive a confirmation. The main idea is similar to that of Dijkstra–Scholten 
algorithm in Section 9.3.1; however, the feedback mechanism is slightly different—a pro-
cess delays the sending of a copy of M (equivalent to an ack) to its parent until it receives 
a copy of M over all links incident on it. A PIF algorithm for broadcasting a value M in a 
network is presented as follows:

program PIF {for the initiator node i}
define count : integer
 N(i): set of neighbors of process i
send M to each neighbor; count := |N(i)|
do count ≠ 0 ∧ M received → count: = count − 1 od
{program for a non-initiator node j≠i}
if message M received → parent := sender
   send M to each neighbor except parent;
   count := |N(j)|;
[] count > 0 ∧ M received → count: = count − 1
[] count = 0 → send M to parent
fi

For every node, the condition count = 0 signals the end of PIF and is a confirmation that 
every node received M. Figure 9.4 illustrates the execution of the PIF algorithm on a net-
work of five nodes.
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9.5 DISTRIBUTED DEADLOCK DETECTION
In a distributed system, a set of processes is deadlocked, when the computation reaches 
some global state (different from the desired goal state) in which every process waits for 
some other process to execute an action—a condition that can never be satisfied. Since all 
well-behaved systems are expected to be free from deadlock, the motivation behind dead-
lock detection needs some justification. In resource-sharing distributed systems involving 
concurrent processes, there exist well-developed techniques for preventing the occurrence 
of deadlock. However, the overhead of deadlock prevention mechanisms is sometimes pro-
hibitive, since it limits concurrency. Moreover, in real life, the occurrence of deadlock is 
somewhat rare. So a cheaper alternative is to avoid deadlock prevention techniques and let 
the computation take its own course with maximum possible concurrency—if deadlock 
occurs, then detect it and resolve it by preempting resources or preempting processes, as 
appropriate.

9.5.1 Resource Deadlock and Communication Deadlock

The detection of deadlock is simple when a single process acts as a central coordinator to 
oversee the usage of all the resources of the system. This is because the coordinator has 
a consistent picture of who is waiting for whom, which is represented using a wait for 
graph (WFG). Deadlock detection is more difficult in systems without a central coordina-
tor, since fragments of the WFG are spread over various processes, and the computation of 
a consistent WFG is a nontrivial problem.
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FIGURE 9.4 The execution of a PIF algorithm with node 0 as the initiator: the broken lines reflect 
the parent relationship, and the darkshade of the nodes indicates the reception of the message M 
through all the incident channels. (a)–(f) show the different phases of the algorithm.
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From an implementer’s perspective, it is useful to study how the WFG is formed and 
maintained. Deadlock occurs when the following four conditions hold:

 1. The access to each resource is mutually exclusive.

 2. Requesting processes hold resources while requesting for more (hold and wait).

 3. Resource scheduling is nonpreemptive.

 4. Each process waits for another process to release a resource (circular waiting).

Consider a distributed database system where a set of processes executes a number of 
transactions. Each transaction needs to acquire one or more locks to gain exclusive access 
to certain types of objects—here, these locks are the resources. Let a process P execute 
a transaction T1 for which it needs to acquire locks a, b, and c. Each process has a local 
resource controller: assume that the local controller of P manages lock a, but locks b and 
c are managed by the local controllers of processes Q and R, respectively. So after acquir-
ing lock a through its local controller, P sends requests for locks b and c to the controllers 
of Q and R. This corresponds to the formation of two directed edges (P, Q) and (P, R) in 
the WFG. If Q concurrently executes another transaction s2 that requires access to lock c, 
then the WFG will contain another directed edge (Q, R). Now, if the resource controller of 
R grants lock c to P, then Q will wait for P to release lock c. As a result, the edge (P, R) will 
disappear, and a new edge (Q, P) will be formed.

Before we search for a new algorithm for deadlock detection, let us ask: Couldn’t 
we use Dijkstra–Scholten termination-detection algorithm for this purpose? This 
algorithm is certainly able to detect the condition when every process in the system is 
waiting. However, deadlock is also possible when a subset of processes is involved in a 
circular waiting condition. This is known as partial deadlock, and it cannot be readily 
detected using Dijkstra–Scholten’s method. This motivates the search for other dead-
lock detection algorithms.

The choice of a proper algorithm also depends on the model of deadlock. Deadlocks 
arising out of the actions described in the transaction-processing scenario previously 
are characteristics of the resource deadlock model. In the resource deadlock model, a 
process waits until it has received all the resources that it has requested. The resource 
model is also called the AND model. In this model, a deadlock occurs if and only if 
there is a cycle of waiting processes, each dependent on the next process in the cycle to 
make progress. There is, however, another kind of deadlock model that has been consid-
ered in the present context—it is called the communication deadlock model. Consider 
the  message-passing model of communication. The local states of the processes alter-
nate between active and passive. A process P that is passive now may become active 
after receiving a message from any one of a set of processes—call it the dependent set 
depend(P) of P. In the corresponding WFG, a directed edge is drawn from each process 
in depend(P) to P. Since P can be activated by any of the processes in its dependent set, 
the corresponding model is called the OR model. We don’t care about the activation 
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mechanism but assume that everything is controlled by messages. In a subset S of the 
set of processes, a communication deadlock occurs when

 1. Every process in S is passive

 2. ∀i ∈ S, depend(i) ⊆ S

 3. All communication channels between processes in S are empty

It is clear that since all incoming channels to the processes in S are empty, none of them can 
ever be active and the condition is stable. The corresponding subgraph is called a knot. This 
section discusses two distributed deadlock detection algorithms for these cases—these 
algorithms due to Chandy et al. [CMH83].

9.5.2 Detection of Resource Deadlock

In a system of n processes 0, 1, 2, …, n − 1, define succ(i) to be the subset of processes that 
process i is waiting for. In the WFG, represent this by drawing a directed edge from pro-
cess i to every process j ∈ succ(i). An initiator node initiates deadlock detection by sending 
probes down the edges of the WFG—the receipt of a probe by the initiator of that probe 
indicates that the process is deadlocked—this is the main idea. These types of algorithms 
are also known as edge-chasing algorithms.

A probe P(i, s, r) is a message with three components: i is the initiator process, s is the 
sender process, and r is the receiver process. The algorithm is initiated by a waiting process i, 
which sends P(i, i, j) to every process j that it is waiting for. We use the following notation in 
the description of the algorithm:

Let depend[j, i] be a Boolean that indicates that process i cannot progress unless pro-
cess j releases a resource. Thus, depend(j, i) ⇒ j ∈ succm(i) (m > 0) in the WFG. Also, 
depend[k, j] ∧ depend[j, i] ⇒ depend[k, i]. The initiator process i is deadlocked when it 
discovers that depend[i, i] is true.

Assuming that no process waits for an event that is internal to it, the program for a typi-
cal process k can be represented as follows:

program resource deadlock {program for process k}
define P() :  probe {has three fields initiator, sender, 

receiver}
 depend[k]: array [0..n−1] of boolean
initially ∀j: 0 ≤ j ≤ n−1, depend[k,j] = false
do P(i,s,k) received ∧ k is waiting ∧ (k ≠ i) ∧ ¬depend(k, i)→
  ∀j ∈ succ(k): send P(i,k,j) to j;
  depend(k,i) := true
 [] P(i,s,k) received ∧ k is waiting ∧ (k = i) →
  process k is deadlocked
od

The aforementioned algorithm detects deadlock, only when the initiator process is con-
tained in a cycle of the WFG. Thus, in Figure 9.5, if process 3 is the initiator, then it will 
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eventually detect that it is deadlocked. However, process 2 is also unable to make progress, 
but using this algorithm, process 2 cannot detect it!* Another observation is this: The ini-
tiator will never know explicitly that it is not deadlocked—the absence of deadlock will 
only be signaled by the eventual availability of the resource that it requested. The proof of 
correctness follows.

Theorem 9.4

Deadlock is detected if and only if the initiator node belongs to a cycle of the WFG.

Proof: By definition, depend[j, i] implies that there is a directed path from process i to pro-
cess j in the WFG. By the first action, every process forwards the probe to each of its succes-
sors in the WFG. Therefore, in a bounded number of steps, the initiator process i receives 
the probe and detects that it is deadlocked (second action). If the initiator does not belong 
to the cycle, then it will never receive its own probe, so deadlock will not be detected.

The first action guarantees that every probe is forwarded to its successors exactly 
once. Since the number of nodes is finite, the algorithm terminates in a bounded num-
ber of steps. ◾

9.5.3 Detection of Communication Deadlock

The second algorithm proposed in [CMH83] detects the OR version of communication 
deadlock. As explained earlier, the OR model implies that when a process waits for mes-
sages from multiple processes belonging to its dependent set, it can go ahead when it 
receives any one of them. Consider the WFG in Figure 9.6. Here, process 3 will be able to 
move ahead when it receives a message from either 1 or 4 (in the AND model, both were 
necessary). Unfortunately, in this case, it will receive neither of them. In fact, no process will 
get the resource it needs. Notice the knot here: Each of the processes in the set {0, 1, 2, 3, 4} has 
a dependent set that belongs to S. This is an example of communication deadlock.

There are similarities between the termination-detection algorithm of Dijkstra and 
Scholten and the communication deadlock detection algorithm due to Chandy et al. 
A waiting process initiates the deadlock detection algorithm by first sending probes 

* Of course this process is not included in any cycle in the WFG, so strictly speaking, this is not deadlocked, but it waits 
for some process that is deadlocked.
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4

FIGURE 9.5 The WFG with five processes. Processes 0, 3, 4 are deadlocked.
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to all the processes in its dependent set. A process receiving the probe ignores it, if it 
is not waiting for any other process. However, if the recipient of a probe is waiting for 
another process, then it takes one of the following two steps:

• If this probe is received for the first time, then it marks the sender of the probe as its 
parent and forwards it to every process in its dependent set.

• If this is not the first probe, then it sends an ack to the sender.

When a waiting process receives acks from every process in its dependent set, it sends an 
ack to its parent. If the initiator receives ack from every process in its dependent set, then 
it declares itself deadlocked.

For any node, let D represent the deficit (i.e., number of probes − number of acks) along its 
outgoing edges. Starting from the initial condition in which an initiator node i has sent out 
probe P(i, i, j) to every node j in its dependent set succ(i), the program is described as follows:

program communication deadlock
define P () : probe {has three fields initiator, sender, receiver}
 parent : process
 ack : message
 D : integer
{program for the initiator node i}
ini tially node i send P(i,i,j) to each j ∈ succ(i), parent = null, 

D = |succ(i)|
do P(i,s,i) → send ack to s;
[] ack → D := D−1
[] D = 0 → deadlock detected
od
{program for a non-initiator node k}
initially D = 0, parent = k
do P(i,s,k) ∧ k is waiting ∧ (parent = k) → parent := s;
   ∀j  ∈ succ(k): send 

(i,k,j) to j;
  D := D + |succ(k)|
[]P(i,s,k) ∧ k is waiting ∧ (parent ≠ k) → send ack to s;
[]ack → D := D − 1
[]D = 0 ∧ k is waiting ∧ (parent ≠ k) →  se nd ack to parent; 

parent := k
od

0 1 2 3 4

FIGURE 9.6 An example of a communication deadlock.
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When the initiator sends out probes, the precondition (D > 0) holds for the initiator. Deadlock is 
detected when (D = 0) holds for the initiator and the algorithm terminates. The proof of correct-
ness of the communication deadlock detection algorithm is similar to the proof of  correctness 
of the termination-detection algorithm and is not separately discussed here.

Unlike the resource deadlock detection algorithm, the communication deadlock detec-
tion algorithm requires two different types of messages (probe and ack) but has wider 
applications. For example, using this algorithm, process 2 in Figure 9.5 can successfully 
detect that it cannot make progress, even if it is not part of a cycle in the WFG.

The message complexities of both the resource deadlock and the communication dead-
lock detection algorithms are O(|E|), where E is the set of edges in the WFG.

9.6 CONCLUDING REMARKS
Most of these algorithms are superposed on an underlying basic computation that remains 
unaffected by the execution of the algorithms. This noninterference is much more pleasant 
than an alternative unrealistic approach in which the underlying computation is frozen, 
the desired global information is computed, and then the computation is restarted.

In deadlock detection, the presence of a cycle or a knot in the WFG is a stable property, 
since process abortion or resource preemption is ruled out. A frequently asked question is: 
What about possible modification of the proposed algorithms, so that not only the pres-
ence but also the absence of deadlocks is reported to the initiator? Remember that little is 
gained by detecting the absence of deadlock as it is an unstable property—if the initiator 
discovers that there is no deadlock, then there is no guarantee that the resource will be 
available, since much will depend on the pattern of requests after the absence of deadlock 
has been detected!

The edge-chasing algorithms for deadlock detection only record consistent global 
states—probes/acks report the finding after a cycle or a knot has been formed. Incorrect 
application of this rule or ad hoc detection techniques may lead to the detection of false 
deadlocks that plagued many old algorithms designed before the concept of consistent 
global states was properly understood.

9.7 BIBLIOGRAPHIC NOTES
The termination-detection algorithm presented in this chapter is described in [DS80]. The 
modified version with optimal message complexity appears in [CV90]. The token-based 
solution was proposed by Dijkstra et al. [DFG83]. Misra [Mi83] presented a marker-based 
algorithm for termination detection in completely connected graphs and suggested neces-
sary extensions for arbitrary network topologies. Segall [Se83] introduced PIF algorithms. 
Chang [C82] explored probe-echo algorithms and demonstrated their applications for sev-
eral graph problems. In [M87] and [M89a], Mattern described different variations of the 
termination-detection algorithm and introduced the credit-recovery algorithm. Tel [T00] 
formally defined the framework of wave algorithms. Both of the deadlock detection algo-
rithms were proposed in [CMH83]. Knapp [K87] wrote a comprehensive survey of dead-
lock detection algorithms and its applications in distributed databases.
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EXERCISES
9.1 Consider a unidirectional ring of n processes 0, 1, 2, …, n − 1. Process 0 wants to 

detect termination, so after the local computation at 0 has terminated, it sends a 
token to process 1. Process 1 forwards that token to process 2 after process 1’s com-
putation has terminated, and the token is passed around the ring in this manner. 
When process 0 gets back the token, it concludes that the computation over the 
entire ring has terminated.

Is there a fallacy in the aforementioned argument? Explain.
9.2 Design a probe-echo algorithm to compute the topology of a network whose topol-

ogy is an undirected connected graph. When the algorithm terminates, the initiator 
of the algorithm should have knowledge about all the nodes and the links in the 
network.

9.3 Design an algorithm to count the total number of processes in a unidirectional ring of 
unknown size. Note that any process in the ring can initiate this computation and more 
than one processes can concurrently run the algorithm. Feel free to use process ids.

9.4 Using well-founded sets, present a proof of termination of the Dijkstra–Scholten 
 termination-detection algorithm on a tree topology.

9.5 In a distributed system, Figure 9.7 represents the WFG at a given time under the 
communication deadlock model. Use Chandy et al.’s algorithm to find out if node 1 
will detect a communication deadlock. Briefly trace the steps.

9.6 In a resource-sharing system, requests for resources by a process are represented as 
(R1 and R2) or (R3 and R4) or….

 a. How will you represent the WFG to capture the semantics of resource request?
 b. Examine if Chandy–Misra–Haas algorithm for deadlock detection can be applied 

to detect deadlock in this system. If your answer is yes, then prove it. Otherwise 
propose an alternative algorithm for the detection of deadlock in this case.

9.7 Consider a network of processes: each process maintains a physical clock C and a 
logical clock LC. When a process becomes passive, it records the time C and sends 
a wave to other processes to inquire if all of them terminated by that time. In case 
the answer is not true, another process repeats this exercise. Devise an algorithm for 
termination detection using this approach. Note that there may be multiple waves in 
the system at any time. (This algorithm is due to Rana and is described in [R83].)

0 1 2 3 4 5

FIGURE 9.7 A WFG using the OR model.
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Graph Algorithms

10.1 INTRODUCTION
The topology of a distributed system is represented by a graph where the nodes repre-
sent processes and the links represent communication channels. Distributed algorithms 
for various graph theoretic problems have numerous applications in communication and 
networking. Here are some motivating examples.

The first example deals with routing in a communication network. When a message is 
sent from node i to a nonneighboring node j, the intermediate nodes route the message 
based on the information stored in the local routing table. This is called hop-by-hop or 
destination-based routing. An important problem is to compute these routing tables and 
maintain them, so that messages reach their destinations in the fewest number of hops, 
or with minimum delay. Finding the minimum hop route is equivalent to computing the 
shortest path between a pair of nodes using locally available information.

The second example focuses on the amount of space required by a node to store the rout-
ing table. Without any optimization, the space requirement is O(n) where n is the number 
of nodes. But with the explosive growth of the Internet, n is increasing at a steep rate—
therefore, the space requirement of the routing table as well as the overhead of maintain-
ing the routing table are matters of concern. This leads to the following question: Can we 
reduce the size of the routing table? Given the value of n, what is the smallest amount of 
information that each individual node must store in their routing tables, so that every mes-
sage eventually reaches its final destination?

The third example visits the problem of broadcasting in a network whose topology is 
represented by a connected graph. Uncontrolled transmission of messages leads to flood-
ing, which wastes communication bandwidth. One way to save bandwidth is to transmit 
the messages along the edges of a spanning tree of the graph. How to compute the spanning 
tree of a graph? How to maintain a spanning tree when the topology changes?

The fourth example addresses the classical problem of computing of maximum flow 
between a pair of nodes in a connected network. Here the flow represents the movement 
of a certain commodity, like a bunch of packets, from one node to another. Each edge of 
the network has a certain capacity (read bandwidth) that defines the upper limit of the 
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flow through that edge. This problem, known as the maxflow problem, is of fundamental 
importance in networking and operations research.

An important issue in distributed algorithms for graphs is that of static vs. dynamic 
topology. The topology is called static when it does not change. A topology that is not 
static is called dynamic—it is the result of spontaneous addition and deletion of nodes and 
edges, which reflects real-life situations. Clearly, algorithms for dynamic topologies are 
more robust than those for static topologies only. In this chapter, we will study distributed 
algorithms for solving a few graph theoretic problems.

10.2 ROUTING ALGORITHMS
Routing is a fundamental problem in networks. Each node maintains a routing table 
that determines how to route a packet to its destination. The routing table is updated 
when the topology changes. A route can have many attributes: These include the num-
ber of hops or the end-to-end delay. For efficient routing, a simple goal is to route a 
message using minimum number of hops. In a more refined model, a cost is associated 
with each link, and routing via the path of least cost may be required. For multimedia 
applications, routing delay is a major factor. Link congestion can influence the delay 
(so delay determines the cost). The path of minimum delay may change even if the 
topology remains unchanged. In this section, we will discuss a few algorithms related 
to routing.

10.2.1 Computation of Shortest Path

Let G = (V, E) be an undirected graph where V = {0, 1, 2, …, n − 1} represents a set of 
 processes and E ⊆ V × V represents a set of edges representing communication links. 
Define N(i) to be the set of neighbors of node i. Each edge (i, j) has a weight w(i, j) that 
represents the cost of communication through that edge. A simple path between a source 
and a  destination node is called a shortest path, when the sum of all the weights in the path 
between them is the smallest of all such paths. The weight w(i, j) of an edge is application 
dependent. For  computing the path with minimum number of hops, we assume w(i, j) = 1. 
However, when w(i, j) denotes the delay in message propagation through link (which 
depends on the degree of congestion), the shortest path computation can be regarded as 
the fastest path computation. To keep things simple, assume that w(i, j) ≥ 0. Our goal is 
to present an asynchronous message-passing algorithm using which each node i ∈ V can 
compute the shortest path to a designated node 0 (called the source or the root node) from 
itself. This is known as the single-source shortest path problem.

A well-known algorithm for computing single-source shortest path is the Bellman–Ford 
algorithm that was used to compute routes in the Advanced Research Projects Agency 
Network (ARPANET) during 1969–1979. In this algorithm, each process i maintains two 
variables:

• D(i) is the best knowledge of node i about its shortest distance to node 0

• parent(i) is the neighbor that leads to node 0 via the shortest path
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Clearly D(0) = 0, and by definition, parent(0) = null. Initially parent(i) = i and ∀i > 0: 
D(i) = ∞. As the computation progresses, D(i) approaches its correct value (i.e., the shortest 
distance from node i to node 0). See Figure 10.1.

Denote a message from a sender by (distance, sender id). The initiator node 0 initiates 
the algorithm by sending out (D(0) + w(0, j), 0) to each node j ∈ N(0). The program is 
described as follows:

program Bellman-Ford shortest path
{program for process 0}
send (D(0)+ w(0,j),0) to each node in j ∈ N(0)
{program for process j > 0, after receiving a message from process i}
do D(i) + w(i,j) < D(j)→
 D(j):= D(i) + w(i,j);
 parent(j):= i;
 send the new D(j) to each node in N(j)\{i}
od

The action by a nonroot process is known as a relaxation step. When the computation 
terminates, for every process i ∈ V, D(i) is the shortest distance from node i to node 0, and 
the path (i, parent(i), parent(parent(i)) … 0) defines the shortest path from node i to node 0. 
The algorithm works for both directed and undirected graphs. For directed graphs, the 
messages are sent along the outgoing edges and received via the incoming edges.

Lemma 10.1

When the algorithm terminates, let k = parent(i). If D(k) is the distance of the shortest path 
from k to 0, then D(i) = D(k) + w(k, i) is the distance of the shortest path from i to 0 and 
the shortest path includes k.

Proof: Suppose this is false. Then the shortest path from i to 0 is via some neighbor j of i, 
where j ≠ k. If D(j) + w(j, i) < D(k) + w(k, i), then at some point, i must have received a message 
from j, and since D(i) > D(j) + w(j, i), node i would have set D(i) to D(j) + w(j, i) and parent(i) 
to j. Even if the message from k was received later, i would not have modified D(i) any further, 
since D(i) < D(k) + w(k, i) will hold. This contradicts the statement of the lemma. ◾
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FIGURE 10.1 Shortest path computation in a weighted graph: For each node i > 0, the directed 
edge (represented by a broken line) points to its parent node.
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The shortest path from node i to node 0 must be acyclic. Since there are a finite number 
of acyclic paths from node i to node 0, and in each step D(i) decreases, the algorithm ter-
minates after a bounded number of steps.

10.2.1.1 Complexity Analysis
Under a synchronous model of computation, every eligible process executes a step in each 
round, and the messages reach their destinations before the next round begins. So, it takes 
at most (n − 1) rounds for the algorithm to terminate. This is because, by Lemma 10.1, once 
D(parent(i)) attains its correct value, it takes one more round for D(i) to become correct. 
Since (1) D(0) is always correct, (2) the paths are acyclic, and (3) there are n nodes, it may take 
at most (n − 1) rounds for every D to be correct and the algorithm to terminate. Since in every 
round every edge carries a message, the message complexity is (n − 1) ⋅ |E|, i.e., O(|V| ⋅ |E|).

Under an asynchronous model of computation, the complexity of Bellman–Ford algo-
rithm is higher. To visualize the worst case, consider the graph in Figure 10.2. Let n be odd. 
Assign the weights to the various edges as shown, where k = (n − 3)/2. The unlabeled edges 
have a weight 0. Now assume that the first message to reach node (n − 1) from node 0 fol-
lows the path 0, 1, 2, 3, …,(n − 2), (n − 1). This leads to
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So far, we assumed that the edge weights are not negative. If this assumption is relaxed 
and cycles of negative weight are allowed to exist in a graph, then paths of arbitrarily small 
length can be created via repeated traversal of the cyclic path. Accordingly, the algorithm 
falls apart. Acyclic paths containing one or more edges with negative weights do not lead 
to this anomaly. Bellman–Ford algorithm has a mechanism to detect such cycles and 
 aborting the computation.
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FIGURE 10.2 Analysis of the complexity of asynchronous Bellman–Ford algorithm.
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10.2.1.2 Chandy–Misra Modification of the Shortest Path Algorithm
In [CM82], Chandy and Misra proposed a modification of this algorithm—the modi-
fied version not only detects the presence of cycles of negative weight but also detects 
the termination of the computation by leveraging Dijkstra–Scholten termination-
detection algorithms discussed in Chapter 9. Corresponding to every message sent by 
a node, an acknowledgment signal (denoted by ack) is received. When the root node 
receives all acknowledgments, termination is detected, and the value of D at each node 
represents the distance of the shortest path between 0 and that node. To instrument 
this idea, define a variable deficit, representing the number of unacknowledged mes-
sages. Initially, for each node, deficit = 0. Node 0, after initiating the computation and 
sending a message to each of its neighbors, sets its own deficit to |N(0)|. The program 
is as follows:

program Chandy-Misra shortest path
{program for process 0}
send (D(0)+ w(0,k),0) to each node in k ∈ N(0);
deficit:=  |N(0)|;
do D(i)+ w(i,0)≥ D(0)→ send ack to sender i
[] deficit > 0 ∧ ack → deficit:= deficit – 1
od; {deficit = 0 signals termination}
{program for process j > 0 after receiving a message from process i}
{initially ∀j:D(j) = ∞, deficit = 0}
do D(i)+ w(i,j)< D(j)→
 if (deficit > 0)∧(parent ≠ j)→ send ack to parent fi;
 D(j) := D(i)+ w(i, j);
 parent := i; {the sender becomes the new parent}
 send the new D(j) to each node in N(j){i};
 deficit := deficit +|N(j)|−1
[] D(i)+ w(i, j)≥ D(j)→ send ack to sender j
[] deficit > 0 ∧ ack → deficit := deficit − 1
[] (deficit = 0) ∧ (parent ≠ j)→ send ack to parent; parent = j
od

To verify the termination-detection property, note that for a noninitiator node j, the 
 predicate (parent ≠ j) indicates that node j has one unacknowledged message from its 
parent. When node j discovers another shorter path (to the initiator) through a differ-
ent predecessor, it switches its parent. As in the Dijkstra–Scholten termination-detection 
 algorithm, a node sends an acknowledgment to its parent only when its deficit = 0. If the 
initiator receives a message, then the condition D(i) + w(i, 0) ≥ D(0) must hold, and the 
initiator returns an acknowledgment to the sender. When the initiator receives a message 
for which the condition D(i) + w(i, 0) < D(0) holds, the existence of a cycle with negative 
weight is detected. This case is not discussed here.

When the weight of each edge is 1, the shortest path computation leads to the formation 
of the breadth first search (BFS) spanning tree with the initiator as the root. Every node 



194   ◾   Distributed Systems: An Algorithmic Approach

with shortest hop distance D from the root has a parent whose shortest distance from the 
root is D − 1. The set of all nodes and the edges joining each node with its parent define the 
BFS spanning tree.

10.2.2 Distance-Vector Routing

Distance-vector routing uses the basic idea of shortest path routing but handles topol-
ogy changes. The routing table of a node (i.e., a router) is an array of tuples (destination, 
next hop, distance). To send a packet to a given destination, it is forwarded to the node in 
the corresponding next hop field of the tuple. In a graph G = (V, E) with n = |V| nodes, 
the distance vector D(i) of node i contains n elements D(i, 0) through D(i, n − 1), where 
D(i, j) defines the shortest distance of node i from node j. The distance-vector elements are 
 initialized as follows:
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Each node j periodically advertises its distance vector to its immediate neighbors. Every 
neighbor i of j, after receiving the advertisements from its neighbors, updates its distance-
vector elements (Figure 10.3a) as follows:

 ∀ ≠ = +k i D i k w i j D j kj: ( , ) min ( ( , ) ( , ))

When a node j or a link incident on j crashes, some neighbor k of it detects the event and 
sets the corresponding distance D(j, k) to ∞. Similarly, when a new node j joins the  network, 
or an existing node j is repaired, the neighbor k detecting it sets the corresponding distance 
to D(j, k) to 1. Following this, the updated distance vector is advertised; the nodes receiving 
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FIGURE 10.3 (a) Node i updates D(i, k) from multiple advertisements received by it. (b) The 
 distance vectors when link (2, 3) crashes.
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the update appropriately modify their distance vectors and forward those values to their 
neighbors. In this way, eventually all nodes recompute their routing tables.

Unfortunately, depending on when a failure is detected, and when the advertisement is 
sent out, the routing table may not stabilize soon. Consider the network of Figure 10.3b. 
Initially, D(1, 3) = 2 and D(2, 3) = 1. As the link (2, 3) fails, D(2, 3) is set to ∞. But node 1 
may still advertise D(1, 3) = 2 to nodes 0 and 2. As a result, node 2 will update D(2, 3) 
to 3 and advertise it to nodes 1 and 0. Node 1, after receiving the advertisement from 
node 2, will subsequently update D(1, 3) to 4. In this way, the values of D(1, 3) and D(2, 3) 
will slowly spiral upward until they become very large. This slow convergence is a major 
 hurdle, and it is called the count to infinity problem. In the implementations of distance 
vector, ∞ is represented by a sufficiently large integer. The larger this integer, the slower 
the convergence.

A partial remedy to the slow convergence rate is provided by the split horizon method, 
where a node i is prevented from advertising D(i, k) to a neighbor j if j is the first hop for 
 destination k. For example, in Figure 10.3b, the split horizon method will prevent node 1 
from advertising D(1, 3) = 2 to node 2. However, if node 1 detects a direct  connection to 3, 
then node 2 is free to advertise D(1, 3) = 1 to node 1. Note that this only avoids delays 
caused by cycles of two nodes (i.e., 1 learning from 2 and 2 learning from 1), and not 
cycles involving more than two nodes. Split horizon is often used with poison reverse, 
where nodes adjacent to bad links (poisoned routes) advertise it back to other nodes in the 
network instructing that certain paths no longer exist and should be removed from their 
routing tables. In Figure 10.3b, node 2 will announce that the route (2, 3) is poisoned (done 
by assigning a sufficiently large value max to D(2, 3)). After learning about a poisoned 
route, other nodes will remove all paths using this link from their tables. Normal opera-
tion resumes when node 2 notifies about the restoration of this link. This speeds up the 
convergence to some extent.

Distance-vector routing protocols mostly run on small networks (usually fewer than 
100 nodes). Examples of distance-vector routing protocols used in practice include RIP 
(Routing Information Protocol) and IGRP (Interior Gateway Routing Protocol). RIP 
uses a limit on the hop count to determine how many nodes (routers) messages must go 
through to reach its destination. A node is considered unreachable if the hop count exceeds 
the limit. The scalability of these protocols is poor and the slow convergence following a 
 topology change is an issue.

10.2.3 Link-State Routing

This is an alternative method of shortest path routing. In comparison with distance-vector 
routing, link-state routing protocol converges much faster and has better scalability. There are 
two phases in link-state routing. In phase 1, each node i periodically broadcasts a  link-state 
packet (LSP) consisting of the weights of all edges (i, j) incident on it to every other node in 
the network. This is known as reliable flooding. In phase 2, each node collects the LSPs from 
other nodes, independently computes the topology of the network, and determines the short-
est route between any pair of nodes using a known shortest path algorithm.
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Reliable flooding must guarantee that eventually every node receives the LSPs from 
every other node and stores them in the array local. In this phase, there are two chal-
lenges: The first challenge is how to control the termination of flooding so that the LSPs do 
not roam around the network forever, and the second challenge is how to cope with node 
(i.e., router) failures and restarts.

The first challenge is handled by asking each node to forward every LSP to its neigh-
bors exactly once—duplicate copies are discarded. Once each node receives every LSP, 
no packet is in circulation any more. An LSP L(id, state, seq) is a message with three 
components: id is the identifier of the initiator process, state is the link state consisting 
of the weights of all edges incident on the initiator, and seq is the sequence number of 
the packet. These sequence numbers help detect duplicate copies of LSPs originating 
from a given node. The sequence numbers start from 0 and increase monotonically, so 
a new LSP with a larger sequence number reflects that it is more recent and replaces an 
old packet with a smaller sequence number. Only the most recent LSP is forwarded to 
the neighbors. When failures are not taken into consideration, the correctness follows 
trivially. The total number of LSPs circulating in the network due to the change of the 
neighborhood of a single node is |E|, since the packet traverses each edge exactly once. 
The protocol is as follows:

program link state {for node i}
define L() : link state packet LSP
 seq : integerz

 local : array [0..n – 1] of LSP {local[k] is the LSP from node k}
 {initially, seq = 0, local[k] := (k, undefined for ∀k ≠i, 0)}

do neighborhood change detected →
    compute link state S;
    send L(i, S, seq) to k ∈ N(i);
    local[0] := (i, S, seq)
    seq := seq + 1
[] L(j, S, seq) received →
 if(j = i) → discard L(j, S, seq)
 [](j≠i)∧(L.seq > local[j].seq)→
    enter L(j, S, seq) into the local database;
    forward L(j, S, seq) to k∈N(i)\{sender}
 [](j≠i)∧(L.seq ≤ local[j].seq)→
    discard L(j, S, seq)
 fi
do

An interesting issue here is the issue of overflow of the sequence number field, which can 
cause the value of seq to abruptly change from its largest value to 0 and create confusion 
about whether the packet with seq = 0 is a new or an old packet. An apparent remedy is to 
use a large sequence number space—for example, with a 32-bit seq, even if a router creates 
a new LSP every 60 s, it will take more than 200 years for seq to overflow. This is more than 
the expected life of most routers. A 64-bit seq will be even better.
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The second challenge, that is, the failure of a node (or the temporary unavailability of a 
router), can make the algorithm more complicated. The failure is detected by a neighbor, 
which marks the link to the faulty node as unavailable. Subsequently, the detecting nodes 
appropriately update their local states before the next broadcast. When a node i crashes, 
the LSPs stored in it are lost. Subsequently, when node i resumes operation, it has no clue 
about the previous value of its seq, so it reinitializes its seq to 0. As a consequence, other 
nodes will discard the newer packets from node i in favor of older packets transmitted by 
i in the past. This will continue until the value of its seq exceeds the last value of seq in the 
LSPs transmitted by i before the crash. To cope with such an anomalous behavior, each 
LSP also contains a time-to-live (TTL) field, which is an estimate of the time after which a 
packet should be considered stale and removed from the local databases.

Even with a large space for seq, sometimes a malfunction can push the value of seq to the 
edge of overflow. Before a node consciously causes an overflow, it should wait long enough 
for its past LSPs to age out. The actual version of the protocol uses several optimizations 
over the basic version described here.

Compared to distance-vector routing, link-state routing has better convergence rate. 
Link-state routing is used in Open Shortest Path First (OSPF).

10.2.4 Interval Routing

Consider a connected network of n nodes. The conventional routing table used to direct 
a message from one node to another is an array of (n − 1) entries, one for each destina-
tion node. Each entry is of the type (destination, port number):destination = v and port 
 number = k imply that to send a packet to its destination v, the node should forward it to 
port k. Since the size of the routing table grows linearly with the size of the network, scal-
ability suffers. Can we do something to reduce the growth of the routing tables even if n is 
large? Interval routing is such a scheme.

Santoro and Khatib [SK85] first proposed interval routing for tree topologies only. To 
motivate the discussion on interval routing, consider the network shown in Figure 10.4. 
Each node has two ports: port 0 is connected to a node of higher id, and port 1 is connected 
with a node of lower id.

012n – 1n i
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FIGURE 10.4 An illustration of compact routing.
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To take a routing decision, a process simply compares its own id with the id of the des-
tination node in the incoming packet. If the destination id is larger than its own id, then 
the message is routed through port 0. If the destination id is smaller, then the message is 
forwarded through port 1. If the two ids are equal, then the message is meant for local 
delivery. Clearly, in this case, the number of entries in the routing table does not change 
with the size of the network. This is an example of a compact routing table.

Interval routing uses a similar concept. Each node has one or more ports, and each port 
is labeled with a nonnegative integer. In a network of n nodes numbered 0.. n − 1, define the 
interval [p, q) between ports p and q as follows:

 if thenp q p q p p p q q< = + + − −[ , ) , , , , ,1 2 2 1…

 if thenp q p q p p p n n q q≥ = + + − − − −[ , ) , , , , , , , , , , ,1 2 2 1 0 1 2 2 1… …

As an example, if n = 8, then [3, 7) = 3, 4, 5, 6, [5, 5) = 5, 6, 7, 0, 1, 2, 3, 4 and [6, 1) = 6, 7, 0. 
Each node arranges the ports in the ascending order and computes the intervals between 
successive port numbers. Clearly, these intervals are nonoverlapping. Routing uses the fol-
lowing rule:

10.2.4.1 Interval Routing Rule
If the destination of a message belongs to the interval [p, q), then send the message to port p.

The key problem in interval routing is the assignment of appropriate labels to the vari-
ous nodes and their ports. Figure 10.5 shows a labeling scheme for a tree with n = 11 nodes 
0, 1, 2, …, 9, 10 and illustrates how data will be forwarded.

In Figure 10.5, node 1 will send a message to node 5 through port 3, since the destina-
tion 5 is in the interval [3, 7). However, if node 1 wants to send the message to node 9, 
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FIGURE 10.5 An example of interval routing: (a) ports and message destinations. (b) A labeled 
tree of 11 nodes. Node labels appear inside the circles, and port numbers are assigned to each port 
connecting to a neighbor.
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then it has to route it through port 7, since the destination 9 belongs to the interval [7, 2). 
Presented in the following is a labeling scheme for a rooted tree of n nodes:

 1. Label the root as node 0, do a preorder traversal of the tree, and label the successive 
nodes in ascending order starting from 1.

 2. For each node, label the port towards a child by the node number of the child. Then, 
label the port towards the parent by L(i) + T(i) + 1 mod n, where

 a. L(i) is the label of the node i

 b. T(i) is the number of nodes in the subtree under node i (excluding i)

As a consequence of the preorder traversal, the first child of node i has a label L(i) + 1, and 
the last child has a label L(i) + T(i) + mod n. Thus, the interval [L(i) + 1 mod n, L(i) + T(i) + 
1 mod n) contains the labels of all the nodes in the subtree under i. The complementary 
interval [L(i) + T(i) + 1 mod n, L(i) + 1 mod n) includes every destination node that does 
not belong to the subtree under node i.

For nontree topologies, a simple extension involves constructing a spanning tree of the 
graph and using interval routing on the spanning tree. However, this method does not 
utilize the nontree edges to reduce the routing distances. Van Leeuwen and Tan [LT87] 
proposed an improved labeling scheme for interval routing on nontree topologies—their 
method uses some nontree edges for efficient routing. Figure 10.6a illustrates an example 
of optimal labeling on a ring topology. Note that not all labeling leads to optimal routes 
towards the destination. For trees, this is a nonissue, since there is exactly one path between 
any pair of nodes.

Optimal paths can be more easily found in arbitrary networks if multiple labels are used 
for the various ports. This leads to multiple intervals for each destination: thus, if two succes-
sive ports p, q of a node bear the labels L(p) = p1, p2 and L(q) = q1, q2, then a packet can be 
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FIGURE 10.6 (a) An optimal labeling scheme on a ring of six nodes: Each node i has two ports with 
labels (i + 1) mod 6 and (i + 3) mod 6. (b) A network for which no linear interval-labeling scheme 
exists.
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routed through port p when the destination id belongs to any one of the intervals [p1, q1) or 
[p2, q2). Optimal routing may need up to Θ(n) labels per node, but a slight compromise with 
optimality has the potential to drastically reduce the size of the routing table. A variant of the 
interval-labeling scheme uses only a linear interval for each port with no wraparound. This 
is called linear interval routing. In [BLT91], the authors show that although some well-known 
networks like hypercubes and grids have feasible linear interval routing schemes, there exist 
graphs in which no linear interval routing is possible. The example in Figure 10.4 demon-
strates linear interval routing by assigning the interval [i + 1, n − 1] to port 0 and [0, i − 1] to 
port 1 of node i, but no linear interval routing exists for the network in Figure 10.6b.

10.2.5 Prefix Routing

While compactness of routing tables is the motivation behind interval routing, a major 
obstacle is its poor ability of adaptation to changes in the topology. Every time a new node 
or a link is added to a network, a very large fraction of the node and port labels have to be 
recomputed. This is awkward.

An alternative technique for routing using compact routing tables is prefix routing, 
which overcomes the poor adaptivity of classical interval routing to topology changes. 
Figure 10.7 illustrates the concept of prefix routing. The label of a node or a port is a string 
of characters from an alphabet σ = {a, b, c, d, …}. The additional symbol λ designates the 
empty string, and ∀x ∈ σ, λ · x = x. To assign labels, first construct a spanning tree of the 
given network, and designate a node as the root. Then, use the following rules:

 1. Label the root by λ.

 2. If a node has a label L, then label its child by L · x (x ∈ σ), that is, extend the label by an 
element of σ. The added label must be unique for each child. (Thus, the labels of two 
children of this node may be L · a and L · b.)

a b

λ

λ λ

λ

λ

λ

a b

b a

a

b a

b a

b a

a a

a a

a a

b a a b a a

b a a

FIGURE 10.7 Prefix routing in a network. The broken lines denote the nontree edges and the 
directed edges point to the parent of a node.
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 3. Label every port from a parent to its child by the label of the child and every port 
from a child to its parent by the empty string λ.

 4. If (u, v) is a nontree edge, then label the port of node u by the label of node v. If, 
 however, node v is the root, then label the port from u to its parent p by the label of 
node p (instead of λ in Rule 4).

The first three rules are adequate for labeling a tree. Rule 4 is needed for dealing with non-
tree topologies only.

Let us now examine the rules for routing a message to its destination. Let X be the label 
of the destination node. When a node with label Y receives this message, it makes the rout-
ing decision as follows:

program prefix routing
{Y = label of the current node, X = label of the destination}
if X = Y → deliver message locally
[]  X ≠  Y → forward message to the port labeled with the longest 

prefix of X
fi

When a new node is added to a tree, new labels are assigned to that node and the edge 
connecting it, without modifying the labels of any of the existing nodes and ports. The size 
of the labels equals the depth of the spanning tree, and the size of the routing table at each 
node is O(Δ), where Δ is the degree of the node.

A variation of prefix routing is used in a class of structured overlay networks, commonly 
known as peer-to-peer networks. These are very large networks used for content sharing, 
so scalability is an important issue. The form of compact routing used in such networks 
guarantees that both the size of the routing table and the number of hops needed to reach 
one node from another are O(log n). We will address this in Chapter 21.

10.3 GRAPH TRAVERSAL
Given an undirected connected graph G = (V, E), a traversal is the process of visiting all 
the nodes of the graph before returning to the initiator. A single initiator initiates each 
traversal. The visitor is a message (or a token or a query) that moves from one node to its 
neighbor in each hop. At any stage, there is a single message in transit. Since no node has 
global knowledge about the topology of G, the routing decision at each node is completely 
local. Traversal algorithms have numerous applications, starting from simple multicast 
and global state collection to web crawling, network routing, and solving game strategy–
related problems.

Traversals on specific topologies like ring, tree, or clique are well covered in many 
 textbooks. We will focus only on traversal of general graphs. The intellectually challeng-
ing task is the correctness of the traversal algorithm that will certify that all nodes will be 
visited and the visitor will eventually return to the initiator.
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One approach is to construct a spanning tree of the graph and use a tree traversal 
 algorithm. For a tree, the two important traversal orders are DFS and BFS. The shortest 
path algorithms generate a BFS tree when the edge weights are equal. In the following, we 
present a couple of algorithms for the construction of spanning trees.

10.3.1 Spanning Tree Construction

Let G = (V, E) represent an undirected graph where V is the set of nodes and E is the set of 
edges. A spanning tree of G is a maximal connected subgraph T = (V, E′), E′ ⊆ E such that 
if one more edge from the set (E\E′) is added to T, then the subgraph ceases to be a tree.

To construct a rooted spanning tree, a specific node is designated as the root. Several algo-
rithms described in this chapter and in the previous chapter generate a spanning tree. For 
example, Dijkstra–Scholten termination-detection algorithm (Chapter 9) generates a spanning 
tree while detecting the termination of a diffusing computation. The Bellman–Ford shortest 
path algorithm also generates a BFS spanning tree when the weight of each edge is 1. In this 
section, we present another asynchronous message-passing algorithm for constructing a rooted 
spanning tree proposed by Chang [C82]. In this algorithm, the root node initiates the construc-
tion by sending out empty messages as probes to its neighbors. A process receiving a probe for 
the first time forwards it to all the neighbors except the one from which it received the probe; 
otherwise, it sends the probe back to the sender. Thereafter, each process counts the number of 
probes that they receive. When the number of probes received by the initiator node equals the 
number of its neighbors, the algorithm terminates. The steps are presented in the following:

 program Changs’s spanning tree
 define probe, echo: messages, parent: process
 initially  ∀i>0, parent(i)=i, parent(0)=undefined
 {program of the initiator node 0}
1 send probe to each neighbor j ∈ N(0)
2 do number of echoes ≠ number of probes →
3 echo received → echo:= echo + 1
4 probe received → send echo to the sender
5 od
6 {program for node j>0 , after receiving a probe}
7 first probe → parent:= sender; forward probe to non-parent   
 neighbors;
8 do number of echoes ≠ number of probes →
9 echo received → echo:=echo+1
10 probe received → send echo to the sender
11 od
12 send echo to parent; parent(i):= i

The set of nodes and the edges connecting each node with its parent define the spanning 
tree. In the following, we argue about the termination of Chang’s algorithm:

Define deficit = (number of probes − number of echoes) in the entire system. Let P denote 
the number of processes that have not received the probe m so far. We use F = (P, deficit) 
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as the variant function. Initially, P = n − 1 and  deficit = 0. Observe that after every action, 
the value of F decreases lexicographically. Actions 3, 4, 9, 10, 12 decrease the value of def-
icit and thus reduce F. Actions 1, 7 increase the number of probes (and therefore the value 
of deficit) but, at the same time, reduce the value of P, so F decreases lexicographically. 
The smallest possible value of F is (0,0), which  represents the terminal configuration. 
Therefore, the system reaches the  terminal configuration in a bounded number of steps.

Figure 10.8 shows the result of such a construction with 0 as the root. The structure of 
spanning tree depends on the message propagation delays. Since these delays are arbitrary, 
different runs of the algorithm lead to different spanning trees.

The message complexity is 2 ⋅ |E| since through each edge, a probe and an echo travel 
exactly once. If the root of the spanning tree is not designated, then to use the previous 
algorithm, a root has to be identified first. This requires a leader election phase. Leader 
election will be addressed in a subsequent chapter.

10.3.2 Tarry’s Graph Traversal Algorithm

In 1895, Tarry proposed an algorithm [Ta1895] for graph traversal. It is the oldest known 
traversal algorithm and hence an interesting candidate for study. An initiator sends out a 
token to discover the traversal route. Define the parent of a node as one from which the 
token is received for the first time. All other neighboring nodes will be called  neighbors. By 
definition, the initiator does not have a parent. The following two rules define the algorithm:

Rule 1: Send the token toward each neighbor exactly once.

Rule 2: If rule 1 cannot be used to send the token, then send the token to its parent.

When the token returns to the root, the entire graph has been traversed.
In the graph of Figure 10.9, a possible traversal route for the token is 0 1 2 5 3 1 4 6 2 6 4 1 

3 5 2 1 0. Each edge is traversed twice, once in each direction, and the edges  connecting each 
node with its parent form a spanning tree. Note that in different runs, Tarry’s  algorithm 
may generate different spanning trees, some of which are not DFS.

To prove that Tarry’s algorithm is a traversal algorithm, we need to show that (1) at least 
one of the rules is applicable until the token returns to the root and (2) eventually every 
node is visited.

0

1 2

3 4

5

Root

FIGURE 10.8 A spanning tree generated by Chang’s algorithm. The directed edge from each 
 nonroot node points to its parent.
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Lemma 10.2

The token has a valid move until it returns to the root.

Proof: Initially when the token is at the root, rule 1 is applicable. Assume that the token 
reached a node i ≠ root from node j = parent(i). It must have reached there. If rule 1 does 
not apply, then rule 2 must be applicable since the path from i to its parent node j remains 
to be traversed. It is not feasible for the token to stay at i if that path is already traversed. 
Thus, the token has a valid move. ◾

Lemma 10.3

Eventually, every node is visited by the token.

Proof (by contradiction): Consider a node j that has been visited, but a neighbor k ∈ N(j) 
has not been visited and the token has returned to the root. Since the token finally leaves j 
via the edge toward its parent (rule 2), j must have forwarded the token to every neighbor 
(rule 1) prior to this. This includes k, and it leads to a contradiction. ◾

Since the token traverses each edge exactly twice (once in each direction), the message 
complexity of Tarry’s algorithm is 2 ⋅ |E|.

10.3.3 Minimum Spanning Tree Construction

A given graph G = (V, E), in general, can have many different spanning trees. To each edge of G, 
assign a weight to denote the cost of using that edge in an application. The weight of a spanning 
tree is the sum of the weights of all its edges. Of all the possible spanning trees of a graph, the 
spanning tree with the smallest weight is called the minimum  spanning tree (MST). The MST 
has many applications. Consider building a subway system connecting a number of places of 
interest in a metro. There is a cost of digging underground tunnels and laying train lines, and 
this cost depends on the pair of endpoints chosen. An MST connecting the places of interest 
will keep the project cost to a minimum. In a  communication network, if there is a predefined 
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FIGURE 10.9 A possible traversal route 0 1 2 5 3 1 4 6 2 6 4 1 3 5 2 1 0. The directed edges show the 
parent relationship, and these edges induce a spanning tree.
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cost for sending a packet across the different edges, then the MST helps broadcast data packets 
to all nodes at minimum cost. Two well-known sequential algorithms for computing the MST 
are Prim’s algorithm (also called Prim–Dijkstra algorithm) and Kruskal’s algorithm.

Prim’s algorithm of building the MST is a greedy algorithm and starts with a tree T = (V′, E′) 
where V′ = {i} (the construction can start from any node i ∈ V) and E′ = Ø. The MST construc-
tion augments T by adding an edge (k, j) ∈ E such that (1) k ∈ V′ and (2) j ∉ V′, and (k, j) has 
the smallest weight of all such edges. This augmentation clearly guarantees that no cycle is 
created. Recursive application of this step leads to the final MST, when V′ = V. In case a choice 
has to be made between two or more edges with the same cost, any one of them can be chosen.

Kruskal’s algorithm is also a greedy algorithm but works somewhat differently: It starts with a 
forest G′ = (V, E′), where E′ = Ø, and augments G′ by adding the edge (k, j) ∈ E such that (1) (k, j) 
has the smallest weight of all the edges not belonging to E′ and (2) no cycle is created. When 
(|V| − 1) edges have been added, the MST is formed. As in Prim’s algorithm, when a choice has 
to be made between two or more edges with the same weight, anyone of them can be chosen.

Before we present a distributed algorithm for MST, consider the following lemma.

Lemma 10.4

If the weight of every edge is distinct, then the MST is unique.

Proof (by contradiction): Suppose the MST is not unique. Then, there must be at least two 
MSTs: MST1 and MST2 of the given graph. Let e1 be the edge of the smallest weight that 
belongs to MST1 but not MST2. Add e1 to MST2—this will form a cycle. Now, break the 
cycle by deleting an edge e2 that does not belong to MST1 (clearly, e2 must exist). This process 
yields a tree whose total weight is lower than that of MST1. So MST1 cannot be an MST. ◾

In [GHS83], Gallager et al. proposed a distributed algorithm for  constructing the MST of a 
connected graph in which the edge weights are unique. Their algorithm works on a message-
passing model and can be viewed as a distributed implementation of Prim’s  algorithm. It uses a 
bottom-up approach (Figure 10.10). The main strategy is summarized later.
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FIGURE 10.10 An example showing two fragments T1 and T2 being joined by a minimum cost 
edge e into a larger fragment.
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10.3.3.1 Overall Strategy
Let G = (V, E) be an undirected graph. Consider two MSTs T1 = (V1, E1) and T2 = (V2, E2) 
(called fragments in GHS83) involving the subsets of nodes V1 and V2, respectively, such 
that V1 ∩ V2 = Ø. Let e be an edge with the minimum weight connecting a node in T1 with 
a node in T2. Then, the subgraph consisting of T1, T2, e is the MST covering the nodes 
V1 ∪ V2.

Initially, each single node is a fragment. The repeated application of the previous strat-
egy forms the MST of G. However, a distributed implementation of the merging algorithm 
involves the following challenges:

Challenge 1: How will the nodes in a given fragment identify the edge (of least weight) to be 
used for connecting with a different fragment?

The answer is that each fragment will designate a coordinator (also called the root) to ini-
tiate the search, and this coordinator will coordinate the task of choosing the least weight 
outgoing edge connecting to a different fragment.

Challenge 2: How will a node in fragment T1 determine if a given edge connects to a node 
of a different tree T2 or the same tree T1? In Figure 10.10, why will node 0 choose the edge 
e with weight 8, and not the edge with weight 4?

A solution is that all nodes in the same fragment must acquire the same name before 
the augmentation takes place. The augmenting edge must connect to a node belonging to 
a fragment with a different name.

In [GHS83], each fragment belongs to a level, which is a nonnegative integer. Initially, 
each individual node is a fragment at level 0. Fragments join with one another in the 
 following two ways:

(Merge) A fragment at level L connects to another fragment at the same level. The level of 
the resulting fragment becomes (L + 1), and the resulting fragment is named after the 
edge joining the two fragments (which is unique since the edge weights are unique). 
In Figure 10.10, the combined fragment will be named 8, which is the weight of the 
edge e.

(Absorb) A fragment at level L joins with a fragment at level L′ > L. In this case, the level 
of the combined fragment becomes L′. The fragment at level L acquires the name of 
the fragment at level L′.

As a consequence of the aforementioned two operations, each fragment at level L has 
at least 2L nodes in it. The grand plan is to generate the MST in at most log2n levels, where 
n =  |V|. One can argue that instead of a larger fragment absorbing the smaller one, the 
smaller fragment could absorb the larger one. However, the number of messages needed 
for one fragment T1 to be absorbed by another fragment T2 depends on the size of the 
T1—so the proposed rule will lead to a lower message complexity.

Each fragment maintains a rooted spanning tree. Communication inside a fragment 
takes place via the edges of the spanning tree. Initially, every singleton node is a fragment, 
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and this node serves as the root of its own fragment. Each node then looks for the least 
weight edge connecting to a neighbor. If both nodes pick each other, then a fragment of two 
nodes is formed at level 1. In this fragment, the node with higher id serves as the new root. 
In general, whenever two fragments merge, the node with higher id across the least weight 
outgoing edge serves as the new root. During an absorb operation, however, the root of the 
fragment with a larger level number continues to serve as the new root. This new root acts 
as the coordinator of that fragment for the next stage of expansion. The notification about 
the change of root within a fragment is sent out using the changeroot message. To facilitate 
communication within a fragment, every node keeps track of its parent and children—for 
multicast, the root uses the chain of child pointers, and for convergecast, nodes reach the 
root following the chain of parent pointers.

10.3.3.2 Detecting the Least Weight Outgoing Edge
When the root sends an initiate message, the nodes of that fragment search for the least 
weight outgoing edge (lwoe). Each node reports the finding through a report message to its 
parent. When the root receives the report from every process in its fragment, it determines 
the least weight outgoing edge for that fragment. The total number of messages required to 
detect the lwoe is O(|Vi|), where Vi is the set of nodes in the given fragment.

To test if a given edge is outgoing, a node sends a test message through that edge. The 
node at the other end may respond with a reject message (when it belongs to the same frag-
ment as the sender) or an accept message (when it is certain that it belongs to a different 
fragment). While rejection is straightforward, acceptance in some cases may be tricky. For 
example, it may be the case that the responding node belongs to a different fragment name 
when it receives the test message, but its fragment is in the process of merging with the 
fragment of the sending node. To deal with this dilemma, when node i sends a test message 
(containing its name and level) to node j, the responses from node j (containing its name 
and level) are as follows:

Case 1: if name(i) = name(j), then send reject.

Case 2: if (name(i) ≠ name(j)) ∧ (level(i) ≤ level(j)), then send accept.

Case 3: if (name(i) ≠ name(j)) ∧ (level(i) > level(j)), then delay sending a response until 
level(j) ≥ level(i) or name(i) = name(j).

Note that the level numbers never decrease, and by allowing a node to send an accept 
message only when its level is at least as large as that of the sending node (and the fragment 
names are different), the dilemma is resolved.

To guarantee the absence of deadlock, we need to establish that the waiting period in 
case 3 is finite. Suppose this is not true. Then, there must exist a finite chain of fragments 
T0, T1, T2, …, Tk−1 of progressively decreasing levels, such that Ti (0 ≤ i ≤ k – 1) has sent 
a test message to Ti+1. But then the last fragment in the chain must also have sent a test 
message to another fragment of the same or higher level, and it is guaranteed to receive 
a response, enabling it to combine with another fragment and raise its level. Thus, the 
wait is only finite.
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For the sake of bookkeeping, each edge is classified into one of the three categories: 
basic, branch, and rejected. Initially, every edge is a basic edge. When a reject message is 
sent through an edge, it is classified as rejected. Finally, when a basic edge becomes a tree 
edge, its status changes to branch. The following lemma is trivially true:

Lemma 10.5

The attributes branch and rejected are stable.
As a consequence of Lemma 10.5, while searching for the least weight output edge, test 

messages are sent through the basic edges only.
Once the lwoe has been found, the root node sends out a changeroot message to the 

nodes in its own fragment. This is the approval from the leader to go ahead. The node at 
the end of lwoe receiving the changeroot message sends out a join message to the node 
at the other end of the lwoe, indicating its willingness to join. The join message initiates a 
merge or an absorb operation. Some possible scenarios are summarized as follows:

Scenario 1: Merge: A node i in a fragment T at level L sends out a (join, level = L, name = T) 
message to a node j in another fragment T′ at the same level L′ = L and receives a (join, 
level = L′, name = T′) message in return (Figure 10.11). Thereafter, the edge through which 
the join messages were exchanged becomes a tree edge and changes its status to branch. 
Between the two nodes (i, j) at the endpoints of the lwoe, the one with the larger id serves as 
the new root. The new name of the fragment corresponds to the weight of the edge (i, j) and 
its level changes to (L + 1). The new root starts the next phase by broadcasting an (initiate, 
L + 1, name) message to the nodes in the combined fragment.

(a)
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i j

(Join, L, T)

(Join, L΄, T΄)

L = L΄

( Join, L, T)
(Join, L΄, T΄)

T

Level = L Level = L΄

T΄

i j

T˝

Level = L˝

(b) L < L΄ < L˝

FIGURE 10.11 (a) Merge operation. (b) Absorb operation.
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Scenario 2: Absorb: A node i in a fragment T at level L sends out a (join, level = L, name = T) 
message to a node j in another fragment T′ at level L′ > L across its lwoe. If the fragment 
T′ has not completed its search for lwoe, then it absorbs T and includes it in the search by 
sending a (join, level = L′, name = T′) message in return. The root of the fragment at level 
L′ continues to serve as the root of the combined fragment. Fragment T at level L changes 
its level to L′ and acquires the name T′ of the other fragment. Then, they collectively search 
for the lwoe. The edge through which the join message is received becomes a tree edge and 
changes its status to branch.

If the fragment L′ has already chosen its lwoe, then that must be distinct from the edge 
(i, j); otherwise, T would have already known about it. In this case, T′ may be waiting 
to join with another fragment T″. Once T′ joins with another fragment, it will initiate 
the next search of lwoe and will send an initiate message to the nodes in T to signal the 
absorption. The algorithm terminates and the MST is formed when no new outgoing 
edge is found in a fragment. A complete example of MST formation is illustrated in 
Figure 10.12.

What if every fragment sends a join message to a different fragment, but no fragment 
receives a reciprocating join message to complete the handshake? Can such a situation 
arise, affecting the progress property? The next lemma shows that this is impossible.
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FIGURE 10.12 An example of MST formation using [GHS83]: The shaded nodes are the roots of 
the fragments and the thick lines denote the tree edges. In part (a), node 3 sends a join request to 5, 
but 5 does not respond until it has formed a fragment by joining with node 2 (part b). Part (c) shows 
the final absorb operation that leads to the formation of the MST.
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Lemma 10.6

Until the MST is formed, there must always be a pair of fragments, such that the roots of 
these two fragments will send a join message to each other.

Proof: Consider the fragments across the edge of least weight. They must send join mes-
sages to each other. This will trigger either a merge or an absorb operation. ◾

10.3.3.3 Message Complexity
Since a fragment at level k has at least 2k nodes, the maximum level number cannot exceed 
log2 n. In each of these levels, each node receives (1) at most one initiate message from 
the root and (2) at most one accept message (response to a test message) and sends (3) one 
report message (response to initiate) toward the root, (4) at most one test message leading 
to an accept from the other end, and (5) one changeroot message (or a join message to a 
different fragment). Since there are n nodes, an upper bound of these messages is 5n ⋅ log2n.

In addition to the above, count the test messages leading to a rejection. An edge is 
rejected only once in the entire algorithm. So the number of these test and reject messages 
will not exceed 2|E|. Therefore, the overall message complexity of the MST algorithm will 
not exceed 5n ⋅ log2n + 2|E|.

10.4 GRAPH COLORING
Graph coloring is a classic problem in graph theory and has been extensively investigated. 
The problem of node coloring in graphs can be stated as follows: Given a graph G = (V, E), 
assign color to the nodes in V from a given set of colors, so that no two neighboring nodes 
have the same color. If we assume that each process has a unique id, and use it as node color, 
then it leads to a valid coloring. However, this is a trivial solution and not interesting at all. 
The design of coloring algorithms becomes particularly challenging when the color palette 
is small, and its size approaches the lower bound for a given class of graphs. The chromatic 
number of a graph is the size of the smallest set of colors that can be used to color the graph. In 
a distributed environment, knowledge is local—so no node knows anything about G beyond 
its immediate neighbors. This adds to the difficulty of designing graph-coloring algorithms 
in a distributed setting. To realize the difficulty, consider the graph in Figure 10.13.

Assume that nodes are anonymous and the process ids are being used for the purpose 
of identification only. It is easy to observe that the nodes of this graph can be colored using 
only two colors {0, 1}. Let c(i) denote the color of node i and N(i) denote the set of neighbors 
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FIGURE 10.13 A graph that can be colored with two colors 0 and 1.
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of node i. Assume that initially, ∀i, c(i) = 0. On the shared memory model of computation, 
let us try a naive algorithm:

program naive coloring
define c(i): color {of process i}
{program for process i}
do ∃j ∈ N(i):c(i)=c(j) → c(i):= 1 − c(i) od

Assume a central scheduler (so only one process executes a step at any time), and let each 
node examine only one neighbor at a time (i.e., fine-grain atomicity). Unfortunately, the 
naive algorithm does not terminate, since there exist infinite behaviors involving one or 
more nodes.* If instead we modify the algorithm by allowing a node to examine its entire 
neighborhood (i.e., coarse-grain atomicity) before choosing a new color that is distinct 
from the colors of its neighbors, then after node 0 executes an action, node 2 does not have 
any eligible action—so the computation hits a dead end.

10.4.1 (D + 1)-Coloring Algorithm

We now present a distributed algorithm for coloring the nodes of a graph with (D + 1) 
colors, where D is the maximum degree of a node. We will designate the set of all colors 
by C. To make the problem a little more challenging, assume that the initial colors of the 
nodes are arbitrary.

The algorithm runs on a shared memory model under a central scheduler. No fairness 
is assumed. The atomicity is coarse-grained, so that a process can read the states of all its 
neighbors and execute an action in a single step. Define nc(i) = {c(j): j ∈ N(i)}. Then, the 
coloring algorithm is as follows:

program (D + 1) coloring
define c(i): color {of process i}, b: color
{program for process i}
do ∃j ∈ N(i):c(i)= c(j) → c(i):= b:b ∈ {C\nc(i)} od

Theorem 10.1

Program (D + 1) coloring produces a correct coloring of the nodes.

Proof: Each action by a node correctly sets its color with respect to those of its neighbors. 
Once a node correctly sets its color, its guard is never enabled by the action of a neighbor-
ing node. So regardless of the initial colors of the nodes, each node executes its action 
at most once, and the algorithm requires at most (n − 1) steps to terminate. ◾

The size of the color palette used in the (D + 1)-coloring algorithm may be far from 
 optimal. For example, consider a star graph where (n − 1) nodes are connected to a single 
node that acts as the hub and n = 100. The (D + 1)-coloring algorithm will use 100 distinct 

* Verify this before you proceed.
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colors, whereas the graph can be colored using two colors only! Converting the graph into 
a dag (directed acyclic graph) helps reduce the size of the color palette. In the transformed 
dag, let succ(i) = {j: (i, j) ∈ E} denote the successors of node i. Also, let sc(i) = {c(j): j ∈ succ(i)} 
and the size of the color palette C exceed |maxi (succ(i))|. Then, the following is an adapta-
tion of the (D + 1)-coloring algorithm for a dag:

program dag coloring;
{program for node i}
initially ∀i : c(i)=0;
do ∃j ∈ succ(i):c(i)= c(j)→ c(i):= b:b ∈ {C\sc(i)} od

For the star graph, if all the edges are directed towards the hub, then each node at the 
periphery has only the hub as its successor, and the aforementioned algorithm can trivially 
produce coloring with two colors only.

Theorem 10.2

The dag-coloring algorithm produces a correct coloring.

Proof (by induction): Any dag has at least one node with no outgoing edges—call such a 
node a leaf. According to the program, the leaf nodes do not execute actions since they have 
no successors. So their colors are stable. This is the base case.

After every node j ∈ succ(i) attains a stable color, it requires at most one more step for c(i) 
to become stable, and such a color can always be found since the set {C\sc(i)} is nonempty. 
Thus, the nodes at distance one from a leaf node acquire a stable color in at most one step, 
those at distance 2 attain a stable color in at most (1 + 2) steps, and so on. Eventually, all 
nodes are colored in at most 1 + 2 + 3 + ⋯ + L = L(L + 1)/2 steps where L is the length of the 
longest directed path in the dag. ◾

Since L ≤ n – 1, the dag-generation algorithm will terminate in O(n2) steps. To use this 
method for coloring undirected graphs, we need to devise a method for converting an 
undirected graph into a dag. A straightforward approach is to construct a BFS spanning 
tree and direct each edge toward a node of higher level, but the outdegree of some nodes 
(and consequently the size of the color palette) may still be large. In some cases, we can do 
much better. The next section addresses this issue with an example.

10.4.2 6-Coloring of Planar Graphs

In this section, we demonstrate a distributed algorithm for coloring the nodes of a planar graph 
with at most six colors (the color palette C = {0, 1, 2, 3, 4, 5}). The basic principle is to transform 
any given planar graph into a directed acyclic graph for which the degree of every node is <6 
and execute the coloring algorithm on this dag. We begin with the assumption of coarse-grain 
atomicity—in a single step, each node examines the states of all its neighbors and, if necessary, 
executes an action. A central scheduler arbitrarily serializes the actions of the nodes.
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For any planar graph G = {V, E}, if e = |E| and n = |V|, then the following results can be 
found in most books on graph theory (e.g., see [Ha72]).

Theorem 10.3

(Euler’s polyhedron formula) If n ≥ 3, then e ≤ 3n − 6.

Corollary 10.1

For any planar graph, there is at least one node with degree ≤ 5.

Call a node with degree ≤ 5 a core node. A distributed algorithm that assigns edge direc-
tions works as follows. Initially, all edges are undirected:

program undirected to dag;
initially all edges are undirected;
{program for each node i}
do number of undirected edges incident on node i ≤ 5 →
 make all undirected edges outgoing
od

At the beginning, at least one core node of G will mark all undirected edges incident on 
them as outgoing. The remainder graph obtained by deleting the core nodes and the directed 
edges from G is also a planar graph, so the core nodes of the remainder graph now mark the 
undirected edges incident on them as outgoing. This continues until the remainder graph is 
empty and all edges are directed. Clearly, this will not take more than n – 1 = |V| –1 steps. 
Figure 10.14 shows two steps of the dag-generation process.

The coloring algorithm will work on this dag. Since ∀i ∈ V: sc(i) ≤ 5, the coloring  algorithm 
will generate a valid node coloring using at most (5 + 1) = 6 colors. Interestingly, the  coloring 
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FIGURE 10.14 An example of generating a dag from a planar graph: The core nodes are shaded. 
(a) The core node 0 executes its action. (b) Core nodes 1, 3, 2 execute their actions. In fact, now all 
nodes are core nodes, and the execution of their actions in any order will lead to the final dag.
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part of the algorithm need not wait for the dag-generation part of the algorithm to terminate—
both of them can run concurrently. The composite algorithm will be as follows:

program planar graph coloring;
{program for node i}
do {Layer A: dag generation actions}
number of undirected edges incident on it ≤ 5 →

make all undirected edges outgoing
{Layer B: coloring actions}
[](outdgree(i)≤ 5)∧(∃j ∈ succ(i):c(i)=c(j))→ c(i):= b:b ∈ {C\sc(i)}
od

Theorem 10.4

The 6-coloring algorithm for planar graph terminates in O(n2) steps.

Proof: After at most n = |V| steps of the dag-generation layer A, all edges will be directed. 
The actions of the coloring layer B cannot undo the effect of dag-generation layer A, or dis-
able the actions of component A. Therefore, with a weakly fair scheduler, regardless of the 
progress of component B, in a bounded number of steps of the composite algorithm, all 
guards of component A will be disabled. Thereafter, in at most O(n2) steps, all nodes will 
be properly colored. Thus, the time complexity of the algorithm is O(n2). ◾

The aforementioned proof uses the general idea of convergence stairs first proposed in 
[GM91]. The framework uses a finite sequence of predicates H0, H1, H2, …, Hk − 1 for a  layered 
construction involving a composite algorithm with k layers, where Hj (0 ≤ j ≤ k – 1) is the 
predicate that holds after layer j terminates. If Hj is closed under the actions of the layers (j + 1) 
through k, then the concurrent execution of the composite algorithm is guaranteed to reach a 
configuration that satisfies the postcondition Hk. Here, there are two layers:

 1. H0 = ∀i ∈ V : outdegree(i) ≤ 5 {postcondition for the dag-generation layer A}

 2. H1 = ∀(i, j) : j ∈ succ(i) : c(i) ≠ c(j) {postcondition for the coloring layer B}

These layers satisfy the composition rule of convergence stairs.

10.5 COLE–VISHKIN REDUCTION ALGORITHM FOR TREE COLORING
Consider a graph G = (V, E), and assume that each node v ∈ V has a unique id. Let n = |V|. It 
is obvious that by using the ids as node colors, one can always generate a legal node  coloring 
for G. However, in general, coloring an n-node graph with n colors is hardly interesting. 
We therefore present an algorithm for reducing the size of the color palette without violat-
ing the constraint ∀i, j ∈ V: (i, j) ∈ E, c(i) ≠ c(j). It is a synchronous algorithm  developed by 
Cole and Vishkin [CV86], and it demonstrates how any rooted tree can be colored using at 
most three colors in log*(n) rounds. Let us first understand the log*  function: log*(n) is the 
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smallest number of log operations needed to bring n down to 2 or less. For example, consider 
n = one trillion. Now,

 log (one trillion) ≅ 40,

 log (log (one trillion)) ≅ 5.322, and

 log (log (log (log (one trillion)))) < 2.

This means that log*(one trillion) = 4. This also illustrates that the log* function grows 
very slowly with the value of the argument.

The reduction algorithm assumes that initially the color of each node is its id. Each 
nonroot node v is aware of its parent p(v). Interpret each color c as a little-endian 
bit string ck−1ck−2ck−3…co, and let |c| denote the size of the bit string. In each round, 
every nonroot node v synchronously executes its actions. The algorithm terminates 
when ∀v ∈ V: c(v) < 6:

program reduce for a rooted tree: actions in each round;
{Program for the root node}
c(root):= 00 followed by bit 0 of c(root)
{Program for each non-root node v}
do c(v) ≥ 6 →
{Let j = smallest index where the bit strings of c(v) and old 
c(p(v)) differ}

c(v):= bit string for j followed by bit j of c(v)
od

Figure 10.15 shows an example. Consider the pair of nodes v, w. In Figure 10.15a, for node 
w, the minimum bit position in which its color label differs from that of its parent v is bit 
position 2. Accordingly, the first part (or the head) of the new label is the binary code 
for 2, that is, 10. This is followed by the second part (or the tail) of the color label, which 
is the value of bit 2 of node w. This leads to the new color label 100 for node w in the next 
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FIGURE 10.15 One step of the execution of algorithm reduce. (a) Initial colors. (b) After one step.
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round. After each round, the algorithm leads to a valid color label whose size is roughly the 
base-2 logarithm of the size of the color label in the previous round. Therefore, in log*(n) 
rounds, the algorithm terminates.

Theorem 10.5

Each round of algorithm reduce leads to a valid node coloring.

Proof: The new color label of any nonroot node v has two parts: (1) the head H, which is the 
smallest index j where the bit strings of the current c(v) and c(p(v)) differ, and (2) the tail T, 
which is the value of bit j of c(v). To prove that the new color labels form a valid coloring, we 
need to show that either the H- or the T-component of the new c(v) and c(p(v)) is distinct.

Case 1: After one round, H-components of c(v) and c(p(v)) are not identical. This automati-
cally leads to a valid coloring.

Case 2: After one round, H-components of c(v) and c(p(v)) are identical. In this case, by 
definition, the T-components of c(v) and c(p(v)) must be different. ◾

Why does the algorithm allow up to six colors for the nodes? Observe that as long as the 
size of the current color label |c(v)| is ≥ 6, the new color label will shrink in size, and the 
program execution will continue to the next round. Once c(v) < 6 holds, the continuation 
of the program execution will be useless, since it will not reduce the values of c. At this 
point, there will be three choices for the H-component (0, 1, 2) and two choices for the 
T-component (0, 1). This leads to a total of six possible colors.

An additional procedure is needed for further reducing the size of the color palette from 
six to three. It begins with a push down mechanism that preserves the legality of the colors 
but leads to a configuration where all the children of the same parent have the same color. 
Thereafter, a simple manipulation of the color labels leads to a valid 3-coloring of the tree. 
The shift-down operation is as follows:

The shift-down operation {concurrently executed}
The root picks a color < 6 and different from its current color.
Each nonroot node v concurrently executes c(v):= c(p(v)).

It is trivial to show that shift-down leads to a valid coloring of the tree. Consider a node 
v and its parent w = p(v). The current colors are legal, so c(v) ≠ c(w). After the shift-down 
operation, c(v) equals the value of old c(w), but node w gets the color of its parent p(w). This 
color must be different from the old c(w) and hence must be distinct from the new c(v). 
In case w is the root, it chooses a new color, so c(v) ≠ c(w) will hold. Thus, the shift-down 
operation guarantees that for every nonroot node v, c(v) ≠ c(p(v)) is true. So, the new color 
labels form a valid coloring.

Since the operation c(v) := c(p(v)) makes the colors of all the children of a given node 
identical, it opens up the possibility of further reducing the size of the color palette from 
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six to three. Consider using the colors {0, 1, 2} instead of {0, 1, 2, 3, 4, 5}. Each node has to 
find a free color that is different from (a) the color of its parent and (b) the color of its chil-
dren. Since there are three colors, such a free color must be available. This forms the basis 
of the final reduction scheme:

Reduction of the color palette size from six to three
z:= 3;
do z ≤ 5 →

 c(v) = z →  pick a color from {0, 1, 2} not used by the 
neighbors of v;

z := z + 1
od

This will run for at most three rounds. The shift-down and the palette reduction steps are 
shown in Figure 10.16.

It is now possible to put the pieces together as a single algorithm for 3-coloring the 
nodes of a tree in O(log*n) rounds:

program 3-coloring of a tree in O(log*n) rounds
{Program for node v}
Execute Algorithm Reduce for log*(n) rounds;
Execute shift-down;
Reduce the color palette size from six to three

The primary merit of the aforementioned algorithm is its near-constant time complexity, 
while keeping the size of the color palette close to optimal.
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FIGURE 10.16 Illustration of the shift-down and the palette reduction steps.
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10.6 MAXIMAL INDEPENDENT SET: LUBY’S ALGORITHM
Given a graph G = (V, E), an independent set is a subset of nodes W ⊆ V such that no two 
nodes in W are adjacent to one another. An independent set is maximal if no node can be 
added to W without violating its independence. Figure 10.17 shows an example.

There are many applications of independent and maximal independent sets (MISs). 
Consider the problem of scheduling an examination. In Figure 10.17, assume that each 
node represents a course and an edge between a pair of nodes (v, w) denotes that at least one 
student has registered for both v and w. Then an independent set denotes which examina-
tions can be concurrently scheduled. A set of examinations will form an MIS if no addi-
tional examinations can be scheduled at that time.

Note that there is a difference between MIS and maximum independent set. Maximum 
independent set refers to the independent set with largest cardinality, and its computation 
is NP-hard. We focus only on the MIS.

A simple distributed algorithm for computing the MIS of an undirected connected 
graph G = (V, E) is as follows. An initiator node uses a traversal algorithm to send a token 
to visit the various nodes of the graph. The token, while visiting a node, determines if the 
node can be included in the independent set or not. Nodes that are included in the MIS are 
assigned a binary tag: f(v) = 1 means the node v is included in the MIS, and f(v) = 0 means 
that the node v is excluded from the MIS. The algorithm is outlined here:

A simple algorithm for computing MIS
{Program for each node v upon receiving a token}
Initially ∀v ∈ V:f(v) = 0
∀w ∈ N(v):f(w) = 0 → f(v):= 1;
Continue with the next node until the traversal is complete;
{The MIS is the set {v ∈ V :f(v)= 1}}

The algorithm is clearly sequential with a time complexity O(|E|) and is not very interesting. 
Subsequently, faster algorithms for solving the MIS problem have been devised using the syn-
chronous round-based model of computation. One such algorithm is due to Luby [Luby86].
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FIGURE 10.17 Examples of independent and MISs. Note: {a, d, h} is an independent set; {a, c, d, 
f, g, j} is a maximal independent set; {a, d, h, f} is also a maximal independent set.
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Luby’s algorithm is randomized and it operates in synchronous rounds, grouped into 
phases. In each phase, every node tries to join the MIS by marking itself with a specific 
probability that is related to its degree. A marked node joins the MIS if none of its higher-
degree neighbors is marked. Otherwise, it unmarks itself. Each successful node removes 
itself and all its neighboring nodes before the next phase begins. The algorithm terminates 
when the remainder set of nodes becomes empty:

Luby’s MIS Algorithm
{Program for node v: all nodes synchronously execute their 
actions)
Define V ′: set of nodes

d(v): degree of v
V ′:=V;
do V ′ ≠ ∅ → {A single phase}

1 Node v marks itself with probability 
1

2
;

d v( )

2  if (∀w ∈ N(v): d(w)>d(v) w is not marked) ∧ (v is marked) →
  node v joins the MIS
3  [](∃ w ∈ N(v): d(w)>d(v) w is marked) ∧ (v is marked) →
  node v unmarks itself
4 fi {If d(v)= d(w) then break the tie using the node identifiers)
5 if v joins the MIS → remove v and its neighbors from V ′ fi
od {End of phase}

Note: In any phase, a node v with d(v) = 0 automatically joins the MIS. No marking is 
necessary.

We first argue that the algorithm indeed produces an MIS. Steps 2, 3, and 4 affirm that 
no two neighboring nodes will join the MIS. Step 5 ensures that if v joins the MIS, then 
none of its neighbors will. Since each of the remaining nodes gets a chance to mark itself 
and join the MIS, the algorithm terminates when no more eligible nodes are left.

The important question here is, how fast does the algorithm terminate? Let L(v) be the set 
of neighbors of v whose degree is larger than d(v). Also let M denote the set of marked nodes.

Lemma 10.7

The probability that a node v joins the MIS ≥ 1/4d(v).

Proof: P[v ∉ MIS|v ∈ M]
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that is, P v MIS v M∉ ∈[ ] ≤|
1

2

Therefore, P v MIS v M∈ ∈[ ] ≥|
1

2

Per (1), P[v ∈ M] = 
1

2d v( )
, which implies P v MIS

d v
[ ]

( )
∈ ≥ ⋅1

2

1

2
, that is, ≥ 1

4d v( )
 ◾

Definition

A good node v is one for which 1

2 ( )

1

6
( )

d w
w N v∈
∑ ≥ .

A good node has a chance of being removed due to one of its neighbors the MIS joining. 
A node that is not good will be called a bad node.

Lemma 10.8

A good node will be removed in step 5 with probability ≥1/12.

Proof: A node v is removed if at least one of its neighbors joins the MIS. The probability 
that at least one neighbor w of a good node v joins the MIS in step 2 is

 P w N v w MIS
d w

w N v
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 {Lemma 10.7 and sum rule}
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The inclusion of w into the MIS triggers the removal of node v in step 5. ◾

How many good nodes are there? If we could show that a constant fraction of the nodes is 
removed in each phase, then we could claim that the algorithm terminates in O(log n) rounds. 
However, this is not necessarily true. In a star graph with n > 4, only the hub is a good node.

To work around this, we prove that a constant fraction of the edges is removed in each 
phase. Define a bad edge as one that connects two bad nodes. An edge that is not bad is a 
good edge. We now prove the following lemma:

Lemma 10.9

At least half of the edges are good.

Proof (by contradiction): Construct a directed graph from G by directing each edge from 
a node towards the higher-degree neighbors (break any tie using node ids). We first show 
that for a bad node v: outdegree(v) ≥ 2.indegree(v).
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To prove it by contradiction, assume that this claim is not true, which means that of all 

edges incident on v, > 1

3
d v( ) are incoming and < 2

3
d v( ) are outgoing edges. Now, define a 

set T = {w: (w, v) is an incoming edge}. Note that
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However, this implies that node v is a good node and leads to a contradiction. So, 

indegree(v) ≤ 
1

3
d v( ), outdegree v d v( ) ( )≥ 2

3
, and outdegree(v) ≥ 2 ⋅ indegree(v).

Since v is a bad node, indegree v d v d v( ) ( ) ( )≤ <1

3

1

2
. So, in the directed version of G, 

at most half of the edges are directed towards bad nodes (Figure 10.18). This means, at least 
half of the edges are directed towards nodes that are not bad, that is, good nodes. By defini-
tion, these are good edges. ◾

Theorem 10.6

Luby’s algorithm terminates in an expected number of O(log n) rounds.

Proof: Per Lemma 10.8, in each phase, a good node is removed with a constant probability 
>1/12. By definition, any edge incident on a good node is a good edge, and when a node 
is removed, all of its neighbors (i.e., all edges incident on it) are also removed (step 5). 
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FIGURE 10.18 At least 1/3 of the edges incident on a bad node are bad.



222   ◾   Distributed Systems: An Algorithmic Approach

It follows from Lemma 10.9 that at least half of the edges are removed in each phase. Upon 
termination, all the |E| edges will be removed, which will take O(log|E|) phases. Since 
|E| ≤ n2 and each phase has a constant number of rounds, the algorithm terminates in an 
expected number of O(log n) rounds. ◾

Note: This proof is due to Roger Wattenhofer [Lecture notes: Chapter 12: Summer 2003], 
who attributes it to a technique taken from Israeli and Itai developed for solving matching 
problems.

10.7 CONCLUDING REMARKS
Many applications in distributed computing center around a few common graph 
 problems—this chapter addresses a few of basic algorithms. An algorithm is considered 
robust, when it works on dynamic graphs, that is, it handles (or survives) changes in 
topology. Mobile ad hoc networks add a new dimension to the fragility of the network 
topology, because their topologies continuously change due to the limited transmis-
sion range of each node. In recent times, embedded systems have witnessed significant 
growth—such systems use sensors that monitor environmental parameters and relay the 
values to a base station. The nodes of sensor networks run on limited battery power, so 
power consumption is a major issue—a low consumption of power adds to the life of the 
system. Therefore, in addition to space, time, and message complexities, a useful per-
formance metric for sensor networks is the amount of power used by the sensor nodes 
 during the execution of an algorithm.

The graphs represent not only physical networks but also logical networks (like overlay 
networks), where the neighborhood relationships are user defined and change over time. One 
classic example is a social network. The scale of these networks is constantly increasing—for 
example, as of 2012, Facebook has nearly 600 million users. As a result, scalability of com-
mon tasks (like multicasting) is a major issue. For an algorithm to be of practical use at that 
scale, space and time complexities of at most O(logk n) (k ≥ 1) are considered to be acceptable.

The GHS algorithm for MST construction has been extensively studied in the published 
literature. This algorithm is an interesting case study of techniques that are valuable in the 
design of many distributed algorithms.

Distance-vector and link-state routings (and their variations) have been the two main 
contenders in network routing. Compared to distance-vector algorithm, the link-state 
algorithm has the merit that it does not suffer from the counting-to-infinity problem when 
there is a change in topology. The main disadvantage of a link-state routing protocol is 
that it does not scale well as more routers are added to the routing domain. Increasing the 
number of routers increases the size and frequency of the topology updates and also the 
length of time it takes to calculate end-to-end routes. This lack of scalability means that a 
link-state routing protocol is unsuitable for routing across the Internet at large, which is the 
reason why the Internet, for the purpose of routing, is divided into autonomous systems. 
Internet Gateway Protocols like OSPF is a link-state protocol that only route traffic within 
a single AS. An Exterior Gateway Protocol like BGP routes traffic between autonomous 
systems. These are primarily vector routing protocols and are more scalable.
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Interval routing is a topic that has generated some interest among theoreticians. It 
addresses the scalability problem of routing tables. However, as of now, its limited ability 
to adapt to changes in topology restricts its applicability. So far, it has been used only for 
communication in some transputer-based distributed systems.* Some attempts of using it 
in sensor networks have recently been reported. Compared to interval routing, prefix rout-
ing is much more popular and used in many structured peer-to-peer networks.

Cole and Vishkin’s algorithm for tree coloring introduces a technique for solving a 
problem in O(log*n) rounds. This technique has been leveraged to solve a few related prob-
lems in O(log*n) rounds. For example, it is possible to show that a graph with degree D can 
be colored with (D + 1) colors in O(log*n) rounds. The proof of Luby’s algorithm for MIS 
construction is due to Wattenhofer.

10.8 BIBLIOGRAPHIC NOTES
Chandy–Misra’s shortest path algorithm [CM82] is an adaptation of the Bellman–Ford 
algorithm used with ARPANET during 1969–1979. The adaptation included a mecha-
nism for termination detection and a mechanism to deal with negative edge weights. The 
link-state routing algorithm also originated from ARPANET and was first proposed by 
McQuillan et al. and is described in [MRC80]. After several modifications, it was adopted 
by the ISO as an OSPF protocol. Santoro and Khatib [SK85] introduced interval routing. 
This chapter demonstrated the feasibility for tree topologies only. Van Leeuwen and Tan 
[LT87] extended the idea to nontree topologies. The probe algorithm for computing the 
spanning tree is originally due to Chang [Ch82]—Segall [Se83] presented a slightly differ-
ent version of it. In [GHS83], Gallager et al. presented their MST algorithm—it has been 
extensively studied in the field of distributed algorithms, and many different correctness 
proofs have been proposed. Tarry’s traversal algorithm [Ta1895], proposed for exploring an 
unknown graph, is one of the oldest known distributed algorithms. The distributed algo-
rithm for coloring planar graphs is due to Ghosh and Karaata [GK93]—the original paper 
proposed a self-stabilizing algorithm for the problem. The version presented in this chap-
ter is a simplification of that algorithm. Luby’s algorithm for constructing an MIS can be 
found in [Luby86]; the complexity analysis presented here is due to Wattenhofer [Lecture 
notes: Chapter 12: Summer 2003], who attributes it to a technique taken from Israeli and 
Itai developed for solving matching problems.

EXERCISES

10.1 Let G = (V, E) be a directed graph. A maximal strongly connected component of G 
is a subgraph G′ = (V′, E′) such that (1) for every pair of vertices u, v ∈ V′, there is a 
directed path from u to v and a directed path from v to u and (2) no other subgraph 
of G has G′ as its subgraph. Propose a distributed algorithm to compute the maxi-
mal strongly connected component of a graph.

* Transputers were introduced by INMOS as building blocks of distributed systems.
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10.2 Consider the graph in Figure 10.19, where each edge is labeled with the signal 
 propagation delay on that edge. With node 0 as the initiator, execute Chang’s 
 algorithm and compute the spanning tree of this graph. Assume that nodes forward 
the probes as soon as they receive it, and local computation takes zero time. Also 
determine how much time it will take to generate the spanning tree.

10.3 Let G = (V, E) be an undirected graph and let V′ ⊂ V represent the membership of 
a group. The members of V′ want to communicate with one another via a multicast 
tree, which is a minimal subgraph of G containing all members of V′—between any 
two members of the group, there is exactly one simple path, and if you remove a single 
node or edge from the multicast tree, that at least one member of the group becomes 
unreachable.

 a. For the graph in Figure 10.19, show a multicast tree for V′ = {0, 5, 6, 7}.
 b.  Given a graph G and a subset V′ of k nodes, suggest a distributed algorithm for 

constructing a multicast tree. Briefly argue why your solution will work.
10.4 In a spanning tree of a graph, there is exactly one path between any pair of nodes. 

If a spanning tree is used for broadcasting a message and a node crashes, then some 
nodes will not be able to receive the broadcast. Our goal is to improve the connec-
tivity of the subgraph used for broadcast, so that it can tolerate the crash of a single 
node. Such a subgraph is a biconnected subgraph of the given graph.

Given the graph in Figure 10.19, give an example of such a minimal graph. Then 
suggest a distributed algorithm for constructing such a subgraph. Argue why your 
algorithm will work.

10.5 In most of the algorithms for rooted spanning tree generation, only one desig-
nated process can be the initiator. For the sake of speedup, consider a modification 
where there are more than one initiator nodes. Explain your strategy and illustrate 
a  construction with two initiators. Does it lead to speedup? Justify your answer.

10.6 Devise an interval-labeling scheme for optimal routing on a (1) 4 × 4 grid of 16 pro-
cesses and (2) a 3-cube of 8 processes. For each topology, show three test cases to 
show that the routes are optimal.
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FIGURE 10.19 Compute a spanning tree of this graph using Chang’s algorithm.
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10.7 Propose an algorithm for locally repairing a spanning tree by restoring connectivity 
when a single node crashes. Your algorithm should complete the repair by adding 
the fewest number of edges. Compute the time complexity of your algorithm.

10.8 a.  Produce two different labeling of the nodes and the ports of following graph for 
the purpose of interval routing. In the first, begin by labeling node u as 0, and in 
the second, start with labeling node v as 0. Check the correctness of these labels 
by verifying the routes between different pairs of nodes (Figure 10.20).

 b.  Propose a prefix routing scheme for the following two networks. In each case, you 
have to label the nodes (not the ports) of the graph in such a way that a message 
can be routed from node X to node Y by forwarding it to the neighbor that has 
the largest prefix match with the destination node (Figure 10.21).

10.9 Decide if a linear interval-labeling scheme exists for the tree of Figure 10.22. Explain 
your decision.

u

vw

x

FIGURE 10.20 A graph for interval routing in problem 10.8.

(a) (b)

FIGURE 10.21 (a) 3-cube. (b) 4-cube.

FIGURE 10.22 A tree for linear interval routing in problem 10.9.
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10.10 Figure 10.2 illustrates the counting-to-infinity problem with distance-vector  routing. 
Suggest a method to fix this problem when the routing graph contains k-cycles 
(k > 2).

10.11 Most of the classical algorithms for generating a spanning tree require O(|E|) mes-
sages and are completed in O(|E|) time. Devise an algorithm that generates the 
spanning tree in O(n) time, where n = |V|. 
(Hint: When the empty message m visits a node i for the first time, it lets every non-
parent neighbor j know that it has been visited. The token is not forwarded until it 
has received an acknowledgment from node j. Since j knows that i has been visited, 
it will not forward the token to i.) Show your analysis of the time and the message 
complexities.

10.12 Given an undirected graph G = (V, E), a matching M is a subset of E, such that no 
two edges are incident on the same vertex. A matching M is called maximal if there 
is no other matching M′ ⊃ M. Suggest a distributed algorithm for computing a max-
imal matching. When the algorithm terminates, each node must know its matching 
neighbor, if such a match exists.

10.13 Devise a distributed algorithm for computing a spanning tree of a graph in which no 
root is designated. You can assume that the nodes have unique names.

10.14 Using the ideas of the O(log*n)-round coloring algorithm for trees, devise an algo-
rithm for coloring the nodes of a ring of size n using six or fewer colors in O(log*n) 
rounds.

10.15 Use the Cole–Vishkin O(log*n) coloring algorithm to devise an O(log*n)-round 
algorithm for computing the MIS of a tree.

10.16 The eccentricity of a vertex v in a graph G is the maximum distance from v to any 
other vertex. Vertices of minimum eccentricity form the center. A tree can have one 
or two centers. Design a distributed algorithm to find the center(s) of a tree. Present 
arguments about why your algorithm works.
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C h a p t e r  11

Coordination Algorithms

11.1 INTRODUCTION
Distributed applications rely on specific forms of coordination among processes to accomplish 
their goals. Some tasks of coordination can be viewed as a form of preprocessing. Examples 
include clock synchronization, spanning tree construction, and leader election. In this section, 
we single out a couple of specific coordination algorithms and explain their construction. Our 
first example addresses leader election, where one among a designated set of processes is cho-
sen as leader and assigned special responsibilities. The second example addresses a problem of 
model transformation: Recall that asynchrony is hard to deal with in real-life applications due 
to the lack of temporal guarantees—it is simpler to write algorithms on the synchronous pro-
cess model (where processes execute actions in lockstep synchrony) and easier to prove their 
correctness. This motivates the design of synchronizers that transform an asynchronous model 
into a synchronous one and help run synchronous algorithms on asynchronous systems. In this 
section, we will discuss several algorithms for leader election and synchronizer construction.

11.2 LEADER ELECTION
A wide variety of distributed applications rely on the existence of a leader among its constituent 
process. The leader is invariably the focus of control and entrusted with the responsibility of 
system-wide management. Consider the client–server model of resource management: Here, the 
server can be viewed as a leader. Client processes send requests for resources to the server, and 
based on the information maintained by the server, a request may be either granted or deferred 
or denied. As another example, consider a centralized database manager—the shared data can 
be accessed or updated by client processes in the system. This manager maintains a queue of 
pending read and writes and processes these requests in an appropriate order. Such a centraliza-
tion of control is not essential, but it offers a simple solution with manageable complexity.

When the leader (i.e., coordinator) fails or becomes unreachable, a new leader is 
elected from among nonfaulty processes. Failures affect the topology of the system—even 
the partitioning of the system into a number of disjoint subsystems is not ruled out. 
For a partitioned system, some applications elect a leader from each connected component. 
When the partitions merge, a single leader remains, and others drop out.
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It is tempting to compare leader election with the problem of mutual exclusion and use 
a mutual exclusion algorithm for electing a leader. They are not exactly equivalent: The 
similarity is that whichever process enters the critical section becomes the leader. However, 
there are three major differences between the two paradigms:

 1. Failure is not an inherent part of mutual exclusion algorithms. In fact, failure within 
the critical section is typically ruled out.

 2. Starvation is an irrelevant issue in leader election. Processes need not take turns to be 
the leader. The system can happily function for an indefinite period with its original 
leader, as long as there is no failure.

 3. If leader election is viewed from the perspective of mutual exclusion, then exit from 
the critical section is unnecessary. On the other hand, the leader needs to inform 
every active process about its identity, which is a nonissue in mutual exclusion.

A formal specification of leader election follows: Let G = (V, E) represent the system 
topology, and each process i ∈ V has a unique identifier. Each process i has a variable L(i) 
that represents the identifier of its leader. Also, let ok(i) denote the predicate that process i 
is nonfaulty. Then, the following three conditions must hold:

 1. ∀i, j ∈ V: ok(i) ∧ ok(j) ⇒ L(i) = L(j)

 2. L(i) ∈ V

 3. ok(L(i)) = true

11.2.1 Bully Algorithm

The bully algorithm is due to Garcia–Molina [G82] and works on a completely connected 
network of processes. It assumes that (1) communication links are fault-free, (2) processes 
can only fail by stopping, and (3) failures can be correctly detected using some mechanism 
like time-out. Once a failure of the current leader is detected, the bully algorithm allows 
the nonfaulty process with largest id to eventually elect itself as the leader.

The algorithm uses three different types of messages: election, reply, and leader. A process 
initiates the election by sending an election message to every other process with a higher id. 
By sending this message, a process effectively asks, “Can I be the new leader?” A reply 
message is a response to the election message. To a receiving process, a reply implies, “No, 
you cannot be the leader.” Finally, a process sends a leader message when it believes that it 
is the leader. The algorithm can be outlined as follows:

Step 1: Any process, after detecting the failure of the leader, bids for being the new 
leader by sending an election message to every process with a higher identifier.

Step 2: If any process with a higher id responds with a reply message, then the request-
ing process gives up its bid for becoming the leader. Subsequently, it waits to receive a 
leader message (I am the leader) from some process with a higher identifier.
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Step 3: If no higher-numbered process responds to the election message sent by node i 
within a time-out period, then node i elects itself as the leader and sends a leader 
message to every process in the system.

Step 4: If no leader message is received by process i within a time-out period after 
receiving a reply to its election message, then process i suspects that the winner of the 
election failed in the mean time and reinitiates the election.

program bully {program for process i}
define failed : Boolean {set if the failure of the leader is detected}
 L: process {identifies the leader}
 m: message {election | leader | reply}
 state : idle | wait for reply | wait for leader
initially ∀i ∈ V state = idle, failed = false

do failure of L(i) detected ∧ failed:= false → failed:= true
[] failed → ∀j > i:send election to j; state := wait for reply; 
failed:= false

[]  (state = idle) ∧ (m = election) → send reply to sender; failed := true
[](state = wait for reply) ∧ (m = reply) → state := wait for leader
[](state = wait for reply) ∧ timeout → L(i): =i; state := idle; 
send leader to all

[] (m = leader) → L(i): =sender; state := idle
[](state = wait for leader) ∧ timeout → failed:= true; state := idle
od

Theorem 11.1

Every nonfaulty process eventually elects a unique leader.

Proof: A process i sending out an election message may or may not receive a reply.

Case 1: If i receives a reply, then i will not send the leader message. In that case, ∀j ∈ V, L(j) ≠ i 
will eventually hold.

Case 2: If i does not receive a reply, then i must be unique in as much ∀j ∈ V: ok(j), j ≤ i 
holds. Note that there will always be a process like this. In this case, i elects itself as the 
leader, and after the leader message is sent out by i and received by all nonfaulty processes, 
the condition ∀j ∈ V: ok(j), L(j) = i holds.

If case 1 holds, but no leader message is subsequently received before time-out, then the 
would-be leader itself must have failed in the mean time. This sets failed to true for every 
process that was waiting for the leader message. As a result, a new election is initiated and 
one of the earlier two cases will eventually hold, unless every process has failed, and the 
problem becomes vacuous. ◾

Message complexity: Each process i (except the process with the largest id) can send an elec-
tion message to (n − i) other processes. Also, each process j receiving an election message 
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can potentially send the reply message to (j − 1) processes. If the would-be leader does 
not fail in the mean time, then it sends out (n − 1) leader messages. However, in the worst 
case, the would-be leader can also fail before sending the leader messages. In this case, a 
time-out occurs, and every process repeats the first two steps. Since out of the n processes 
at most (n − 1) can fail, the first two steps can be repeated O(n) times. Thus, the worst-case 
message complexity of the bully algorithm is O(n3).

11.2.2 Maxima Finding on a Ring

Once we disregard failures and fault detection,* the task of leader election reduces to finding 
a node with a unique (like maximum or minimum) id. While the bully algorithm works 
on a completely connected graph, there are several algorithms for maxima finding that are 
designed to work on ring topologies. These solutions are conceptually simple, but differ 
from one another in message complexity. We will discuss three algorithms in this section.

11.2.2.1 Chang–Roberts Algorithm
In [CR79], Chang and Roberts presented a leader election algorithm for a unidirectional 
ring—it is an improvement over the first such algorithm proposed by LeLann [Le77]. 
Assume that a process can have one of two colors: red or black. Initially, every process is 
red, which implies that every process is a potential candidate for being the leader. A red 
process initiates the election by sending a token, which means, I want to be the leader. Any 
number of red processes can initiate the election. If, however, a process receives a token 
before initiating the algorithm, then it knows that there are other processes running for 
leadership—so it quits and turns black. A black process never turns red and acts as a router. 
At the end, only one process remains red, and it is the leader.

program Chang-Roberts
define token: process id, color ∈ {red,black}
initially all processes are red and i sends a token 〈i〉 to its neighbor;
(for a red process i)
do token 〈j〉 received ∧ (j < i)→ skip {j’s token removed, so j quits}
[]token 〈j〉 received ∧ (j > i)→ send 〈j〉; color := black {i quits}
[]token 〈j〉 received ∧ (j = i)−L(i):=i {i becomes the leader}
od
{for a black process}
do token 〈j〉 received → send 〈j〉 od

Let us examine why the algorithm works. A token initiated by a red process j will be 
removed when it is received by a process i > j. So ultimately, the token from a process with 
the largest id will prevail and will return to the initiator. Thus, the process with the largest 
id elects itself as the leader. It will require another round of leader messages to inform the 
identity of the leader to every other process.

To analyze the complexity of the algorithm, consider Figure 11.1. Assume that every pro-
cess is an initiator, and their tokens are sent in the anticlockwise direction around the ring. 

* We will deal with failures in Chapters 12 through 17.
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Before the token from process (n − 1) reaches the next process (n − 2), the tokens from every 
other process reach node (n − 1) in the following order: Token〈0〉 reaches (n − 1), token〈1〉 
reaches (n − 1), token〈2〉 reaches (n − 1), and, finally, token〈n−2〉 reaches (n − 1), and all 
these tokens get removed. The worst-case message complexity is therefore 1 + 2 + 3 + ⋯ 
+(n − 1) = n(n − 1)/2.

The algorithm can be naturally extended to an arbitrary graph topology for which a 
Hamiltonian cycle exists.

11.2.2.2 Franklin’s Algorithm
Franklin’s election algorithm works on a ring that allows bidirectional communication. 
Compared to Chang–Robert’s algorithm, it has a lower message complexity. Processes with 
unique identifiers are arranged in an arbitrary order in the ring. There are two possible 
colors for each process: red or black. Initially, each process is red which implies that every 
process is a potential candidate for leadership.

The algorithm is synchronous and works in rounds. In each round, to bid for leadership, 
each red process sends a token containing its unique id to both neighbors and then examines 
the tokens received from other processes. As process i receives a token from process j and j > i, 
it quits the race and turns black. A black process remains passive and acts as a router only.

Since tokens are sent in both directions, whenever two adjacent red processes exchange 
tokens, one of them must turn black. In each round, a fraction of the existing red processes 
turn black. The algorithm terminates when there is only one red process in the entire sys-
tem. This is the leader. The program for a red process i is as follows:

program Franklin
define token: process id, color ∈ {red,black}, r: integer {round number}
initially all processes are red, r = 0 and i sends a token 〈i〉 to its neighbor;
{for a red process i in round r ≥ 0}
send token〈i〉 to both neighbors;
receive token〈j〉 from both neighbors;
if ∃  token〈j〉:j > i → color := black
[]∀  token〈j〉:j < i → r: = r + 1 {move to the next round}
[]∀  token〈j〉:j = i → L(i): = i {algorithm terminates}
fi

n−1

0

1
2

3

4

n−2

FIGURE 11.1 Illustration of the execution of Chang–Robert’s election algorithm: the token from 
process 3 reached process (n − 1) and processes 2 and 1 turned black.
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Theorem 11.2

Franklin’s algorithm elects a unique leader in at most (1 + log2n) rounds.

Proof: For a red process i, in each of the two directions, define a red neighbor to be a red 
process that is closest to i in that direction. Thus, in Figure 11.2, after round 0, processes 7 
and 9 are the two red neighbors of the process 2.

After each round, every red process i that has at least one red neighbor j > i turns black. 
Therefore, in a ring with k (k > 1) red processes, at least ⌊k/2⌋ turn black. Initially, k = n. 
Therefore, after at most log2n rounds, the number of red processes is reduced to one. In the 
next round, it becomes the leader. ◾

The algorithm terminates in O(log2n) rounds, and in each round, every process sends 
(or forwards) a message in both directions. Therefore, the worst-case message complexity 
of Franklin’s algorithm is O(n ⋅ logn).

11.2.2.3 Peterson’s Algorithm
Like Franklin’s algorithm, Peterson’s algorithm works on a ring topology and operates in 
synchronous rounds. Interestingly, it elects a leader using only O(n ⋅ logn) messages even 
though it runs on a unidirectional ring. Compared to Franklin’s algorithm, there are two 
distinct differences:

 1. A process communicates using an alias that changes from one round to another dur-
ing the progress of the computation.

 2. A unique leader is eventually elected, but that is not necessarily the process with the 
largest identifier in the system.

As before, we assume that processes can have two colors: red or black. Initially, every pro-
cess is red. A red process turns black when it quits the race for becoming a leader. A black 
process is passive—it only acts as a router and forwards incoming messages to its neighbor.

Assume that the ring is oriented in the clockwise direction. Any process will designate 
its anticlockwise neighbor as the predecessor and its clockwise neighbor as the successor. 
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FIGURE 11.2 Execution of Franklin’s algorithm: The shaded processes are black. After two rounds, 
process 9 is identified as the leader (maxima).
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Designate the red predecessor (the closest red process in the anticlockwise direction) of i 
by N(i) and the red predecessor of N(i) by NN(i). Until a leader is elected, in each round, 
every red process i receives two messages: one from N(i) and the other from NN(i)—these 
messages contain aliases of the senders. The channels are FIFO. Depending on the relative 
values of the aliases, a red process either decides to continue with a new alias to the next 
round or quits the race by turning black.

Denote the alias of a process i by alias(i). Initially, alias(i) = i. The idea is comparable to 
that in Franklin’s algorithm, but unlike Franklin’s algorithm, a process cannot receive a 
message from both neighbors. So, each process determines the local maxima by comparing 
alias(N) with its own alias and alias(NN). If alias(N) happens to be larger than the other 
two, then the process continues its run for leadership by assuming alias(N) as its new alias. 
Otherwise, it turns black and quits. In each round, every red process executes the follow-
ing program:

program Peterson{for a process in each round}
define alias: process id, color: black or red
initially ∀i:color(i)=red, alias(i)=i
send alias; receive alias(N);
if alias = alias(N)→ I am the leader
[]alias ≠ alias(N)→ send alias(N); receive alias(NN);
 if alias(N) > max (alias,alias(NN))→ alias:=alias(N)
  {In the above case, i remains red and moves to the
  next round}
  []alias(N) < max (alias,alias(NN)) → color:= 
  black {i quits}
 fi
fi

Figure 11.3 illustrates the execution of one round of Peterson’s algorithm.
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FIGURE 11.3 One round of execution of Peterson’s algorithm: For every process, its id appears 
inside the circle, and its alias appears outside the circle. Shaded circles represent black processes. 
After one more round, only 5 remains red.
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Proof of correctness
Let i be a red process before round r(r ≥ 0) begins. Then, after round r, process i remains red 
if and only if the following condition holds:

 LocalMax alias N i alias i alias N i alias NN i≡ > ∧ >( ( )) ( ) ( ( )) ( ( ))

We show that in each round, at least one of the two red processes i and N(i) will turn black.

Lemma 11.2

Let i be a red process, and j = N(i) before a round begins. Then at the end of the round, 
either i or j must turn black.

Proof (by contradiction): Assume that the statement is false. Then both i and j will remain 
red after that round. From LocalMax, it follows that if i remains red after that round, then 
alias(j) > alias(i) ∧ alias(j) > alias(N(j)) must hold. Again, if j remains red after that round, 
then alias(N(j)) > alias(j) ∧ alias(N(j)) > alias(NN(j)) must also hold. Both of these cannot 
hold at the same time, so the statement is true. ◾

It is not impossible for two or more neighboring red processes to turn black in the same 
round (see Figure 11.3). In fact, this helps our case and accelerates the convergence.

Theorem 11.3

Peterson’s algorithm elects a unique leader at most (1 + log2n) rounds.

Proof: It follows from Lemma 11.2 that after every round, at least half of the existing red 
processes turn black. So, after at most log2n rounds, only one red process i remains, i = N(i), 
and the condition alias(i)=alias(N(i)) holds. In the next round, process i elects itself as the 
leader. ◾

Message complexity: Since there are at most (1 + log2n) rounds, and in each round every 
process sends (or forwards) two messages, the number of messages required to elect a 
leader is bounded from above by O(n ⋅ log2n). Despite the fact that the communication 
is unidirectional, the message complexity is not inferior to that found in Franklin’s algo-
rithm for a bidirectional ring.

11.2.3 Election in Arbitrary Networks

For general networks, if a ring is embedded on the given topology, then a ring algorithm can 
be used for leader election. The orientation of the embedded ring helps messages propagate in 
a predefined manner. As an alternative, one can use flooding to construct a leader election. 
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Assume that the algorithm runs in rounds. Initially, ∀i ∈ V: L(i) = i. In each round, each 
node i sends its L(i) to every node j ∈ N(i). After a node i received the messages from its 
neighbors, it picks the largest id from the set {L(i) ∪ L(j): j ∈ N(i)}, assigns it to L(i), and 
sends the updated L(i) to its neighbors. The algorithm will terminate after D rounds, where 
D is the diameter of the graph. Here is an outline:

program election in an arbitrary network {for each process i}
define r: integer {round number},L: process id {identifies the leader}
initially r = 0, L(i)=i
do r < D→
 send L(i) to each j ∈ N(i);
 receive L(j) from each j ∈ N(i);
 L(i):= max{L(i)∪L(j:j ∈ N(i)}
 r: =r + 1
od

The algorithm requires processes to know the diameter (or at least the total number of 
processes) of the network. The message complexity is O(Δ ⋅ D) where Δ is the maximum 
degree of a node.

11.2.4 Election in Anonymous Networks

In anonymous networks, process identifiers are not used. Therefore, the task of leader elec-
tion becomes an exercise in symmetry breaking. Randomization is a widely used tool for 
breaking symmetry. Here, we present a randomized leader election algorithm that uses 
a single bit b(i) for each process. Algorithm works in synchronous rounds and works on 
completely connected networks only.

A process can be in one of two states: active or passive. Initially, every process is active 
and is a contender for leadership. In each round, each active process i randomly chooses 
a value for b(i) from the set {0,1}. Define the set S = {i: b(i) = 1}. If |S| = 1, then process i ∈ S 
becomes the leader, and the algorithm terminates. Otherwise, the processes in S move 
to the next round, and those not belonging to S become passive and quit the race. This 
reduces the competition. There is one exception: When ∀i,j: b(i) = b(j), no progress is 
made, and all processes must repeat the random selection. However, this event cannot 
continue forever, and in a bounded number of rounds, the condition ∃i,j: b(i) ≠ b(j) will 
hold. The active processes moving to the next round continue the algorithm, until one 
process is elected as the leader. The description of the algorithm uses ids for the purpose 
of identification only.

Note that after each round, half of the processes are expected to advance to the next 
round. So in a system of n processes, a leader is elected after an expected number of logn 
rounds. Since in each round, every active process communicates with every other active 
process, the message complexity is O(n2 logn).
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program election_anonymous {for each active process i in every round}
define b: bit, state ∈{active,passive}
 S={i:b(i)=1}
initially every process is active, ∀i:b(i) = 0, S = ∅
b(i):=random{0,1}
send b(i) to every active process;
receive b(i) from every active process
if (|S|  =1)∧(i ∈ S)→i is the leader
[](1<|S| <n )∧(i ∈ S)→i moves to the next round
[](1<|S| <n )∧(i ∉ S)→state:=passive{i quits}
fi

11.3 SYNCHRONIZERS
Compared to synchronous algorithms, asynchronous algorithms are often more difficult 
to design and analyze and have a higher complexity. Since most distributed computing 
platforms are naturally asynchronous, it is tempting to devise a mechanism by which syn-
chronous algorithm could be run on asynchronous platforms. A synchronizer is a protocol 
that transforms an asynchronous model into a synchronous process model (i.e., processes 
operate in lockstep synchrony) and enables synchronous algorithms to run on it. A syn-
chronous algorithm runs in discrete steps known as rounds or clock ticks (a.k.a. clock 
pulse). In each tick, a process can

• Perform a local computation

• Send out messages to its neighbors and receive messages from its neighbors

Messages sent out in clock tick i are assumed to reach their destinations in the same 
clock tick—based on these, processes update their states in the next clock tick (i + 1). 
A synchronizer performs the model transformation by simulating the synchronous rounds 
on an asynchronous network. This results in a two-layered design. Synchronizers provide 
an alternative technique for designing algorithms on asynchronous distributed systems. 
Assume that each node has a clock pulse generator and these clocks tick in unison. Actions 
are scheduled with these clock ticks. The implementation of a synchronizer must guaran-
tee the condition that a new pulse is generated at a node only after it receives all the mes-
sages of the synchronous algorithm, sent by its neighbors at the previous pulse. However, 
the difficulty in providing this guarantee is that no node knows which messages were sent 
to it by its neighbors, and the message propagation delays can be arbitrarily large.

Contrary to apprehensions about the complexity of the two-layered algorithm, the com-
plexity figures of algorithms using synchronizers are quite encouraging. In this chapter, we 
will present the design of a few basic types of synchronizers.

11.3.1 ABD Synchronizer

An asynchronous bounded delay (ABD) synchronizer [CCGZ90] [TKZ94] can be imple-
mented on a network where every process has a physical clock, and the message propagation 
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delays have a known upper bound δ. In real life, all physical clocks tend to drift. However, 
to keep our discussion simple, we assume that once initialized, the difference between a 
pair of physical clocks does not change during the life of the computation.

Let C denote the physical clock of a process. One or more processes spontaneously initiate 
the synchronizer actions by assigning C:= 0, executing the actions for tick (0), and sending 
a <start> signal to its neighbors (Figure 11.4). By assumption, actions take zero time. Each 
noninitiating neighbor j wakes up when it receives the <start> signal from a neighbor, ini-
tializes its clock C to 0, and executes the actions for tick 0. This completes the initialization.

Before a process p simulates the actions of tick(i + 1), p along with its neighbors must 
send and receive all messages corresponding to tick i. If p sends the <start> message to q, 
q wakes up and sends a message that is a part of initialization actions of tick 0, then p will 
receive it at time ≤2δ. Therefore, process p will start the simulation of the next pulse (tick 1) 
at time 2δ. Eventually, process p will simulate tick k of the synchronous algorithm at local 
clock time 2kδ. The permission to start the simulation of a tick thus entirely depends on 
the local clock value.

11.3.2 Awerbuch’s Synchronizers

When neither the physical clocks are synchronized nor the upper bound of the message 
propagation delays is known, the ABD synchronizer does not work. In [Aw85], Awerbuch 
addressed the design of synchronizers for such weaker models and proposed three differ-
ent kinds of synchronizers with varying message and time complexities.

The key idea behind Awerbuch’s synchronizers is the determination of when a process is 
safe to schedule the actions of the next clock tick. By definition, a process is safe for a given 
clock tick when (1) it has received an ack for every message that it sent during the current 
tick and (2) its neighbors have sent out their messages for the current tick. A safe process 
announces this by sending a <safe> message to its neighbors. A violation of this policy may 
prompt a process to start scheduling the actions of tick (j + 1) before receiving a message for 
tick j from a neighbor. Here, we describe three different types of synchronizers. Each has a 
different strategy for using the topological information and detecting safe configurations.

11.3.2.1 α-Synchronizer
Before incrementing tick, each node needs to ensure that it is safe to do so. The 
α-synchronizer implements this by asking each process to send a <safe> message after 

0 1 2

3

<start><start>

<start><start>

0 1 2

3(a) (b)

FIGURE 11.4 Simulation of a clock tick by an ABD synchronizer: (a) 1 and 3 spontaneously initiate 
the synchronizer operation, initialize themselves, and send start signals to the noninitiators 0 and 2; 
(b) 0 and 2 wake up and complete the initialization. This completes the action of tick 0.
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it has sent and received all messages for the current clock tick. Each process executes the 
following three steps for the simulation tick i:

 1. Send and receive messages <m,i> for the current tick i.

 2. Send <ack,i> for each incoming message, and receive <ack,i> for each outgoing mes-
sage for the current tick i.

 3. Send <safe,i> to each neighbor.

When a process receives <safe,i> messages from every neighbor for tick i, it increments its 
tick to (i + 1) and starts the simulation of tick (i + 1). Figure 11.5 shows a partial trace of the 
execution of the α-synchronizer.

Complexity issues: For the α-synchronizer, the message complexity M(α) is the number of mes-
sages passed around the entire network for the simulation of each tick. It is easy to observe 
that M(α) = O(|E|)—in addition to the original messages of the synchronous algorithm, two 
other messages <ack> and <safe> are sent through every edge of the network. Similarly, 
the time complexity T(α) is the maximum number of asynchronous rounds required by the 
synchronizer to simulate each tick across the entire network. Since each process exchanges 
three messages <m>,<ack>,<safe> for every round of the synchronous algorithm, T(α) = 3.
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FIGURE 11.5 Partial trace of the execution of an α-synchronizer: the numbers inside the circles 
indicate the tick number that they are simulating. The process at the top starts the computation. 
The message m(0) sent by it wakes up its neighbors. (a)–(f) show six different phases.
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Let MS and TS be, respectively, the message and the time complexities of a synchro-
nous distributed algorithm. Then using a synchronizer, the same algorithm can be imple-
mented on an asynchronous model with a message complexity MA and a time complexity 
TA where
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It is possible that in the original synchronous algorithm, one or more processes do not 
send out a message to its neighbors in one or more rounds. However, in these rounds, the 
α-synchronizer must send out a blank message on behalf of these processes.

11.3.2.2 β-Synchronizer
The β-synchronizer needs an initialization phase before the simulation of the clock ticks 
begins. The initialization phase involves constructing a spanning tree of the network. 
A designated initiator is the root of the spanning tree. The initiator starts the simulation 
by sending out to its children a next message that prompts them to start the simulation 
for tick 0. Thereafter, the operations are similar to those in the α-synchronizer, except that 
the control messages (next, safe, and ack) are sent along the tree edges only. A safe process 
sends a <safe,i> message to its parent to indicate that the entire subtree under it is safe for 
tick i. If the root receives a <safe,i> message from each child, then it knows that every node 
in the spanning tree is safe for tick i—so it sends a next message to start the simulation of 
the next tick (i + 1).

The message complexity M(β) can be estimated as follows. Each process exchanges the 
following messages:

 1. Sends and receives messages <m,i> for tick i to and from its neighbors.

 2. Sends and receives <ack,i> to and from its neighbors. Thereafter it sends a <safe,i> 
message to its parent.

 3. Receives a <safe,i> message from each child via the tree edges. The safe signals are 
convergecast via tree edges. If the process itself is safe, and it is not the root, then it 
sends a safe message to its parent.

 4. When the root receives the safe messages from every child, it knows that the entire 
tree is safe. Then it sends out a <next,(i+1)> message via the tree edges to the nodes of 
the network. After receiving the <next,(i+1)> message, a node begins the simulation 
of tick (i + 1).

In a spanning tree of a graph with n nodes, there are (n − 1) edges. The three control 
messages (ack, safe, next) flow through each of the (n − 1) tree edges. So, the extra message 
complexity is M(β) = O(n). The time complexity T(β) is proportional to the height of the 
tree, which is at most (n − 1), but often much smaller when the tree is balanced.
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The method of computing the complexity of an asynchronous algorithm using a 
β-synchronizer is similar to that using the α-synchronizer, except that there is an overhead 
for the construction of the spanning tree. This is a one-time overhead, and its complexity 
depends on the algorithm chosen for it.

11.3.2.3 γ-Synchronizer
Comparing the α-synchronizer with the β-synchronizer, we observe that the β-synchronizer 
has a lower message complexity, but the α-synchronizer has a lower time complexity. The 
γ-synchronizer utilizes the best features of both β- and α-synchronizers.

In a γ-synchronizer, there is an initialization phase, during which the network is divided 
into clusters of processes. Each cluster is a subgraph containing a subset of processes. The 
β-synchronizer protocol is used to synchronize the processes within each cluster, whereas 
the α-synchronizer is used to synchronize processes between clusters. To implement this 
idea, each cluster identifies a leader—it acts as the root of a spanning tree for that cluster. 
Neighboring clusters communicate with one another through a designated edge known as 
an intercluster edge (see Figure 11.6).

Using the β-synchronizer protocol, when the leader of a cluster finds that each process 
in the cluster is safe, it broadcasts to all processes in the cluster that the cluster is safe. 
Processes incident on the intercluster edges forward this information to the neighboring 
clusters using a cluster.safe message. The nodes receiving the cluster.safe message from the 
neighboring clusters convey to their leaders that the neighboring clusters are safe. The 
sending of a cluster.safe message from the leader of one cluster to the leader of a neighbor-
ing cluster simulates the sending of a safe message from one node to its neighbor in the 
α-synchronizer.

FIGURE 11.6 Clusters in a γ-synchronizer: The shaded nodes are the leaders in the clusters, and 
the thick lines are the intercluster edges between clusters.
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We now compute the message and time complexities of a γ-synchronizer. Partition the 
graph G = (V, E) into a number of clusters; adjacent clusters are connected by a set of pre-
ferred edges called intercluster edges. Within a cluster, the coordination progresses in the 
usual way. The intercluster coordination is carried out using the following control mes-
sages for clock tick i:

 1. A <safe,i> message is sent to the parent, after a <safe,i> message is received from all 
children in the cluster. When the leader in a cluster receives the <safe,i> messages 
from every child, it knows that the entire cluster is safe. To advertise this, the leader 
broadcasts a <cluster.safe,i> message to every node in the cluster via the spanning tree.

 2. When a node incident on the intercluster edge receives the <cluster.safe,i> message 
from its parent, it forwards that message to the neighboring cluster(s) through the 
intercluster edges to indicate that this cluster is safe.

 3. The nodes receiving the <cluster.safe,i> message from the neighboring clusters con-
vergecast it toward their leaders via the tree edges. The leader of a cluster eventually 
learns about the receipt of the <cluster.safe,i> messages from every neighboring clus-
ter. At this time, the leader broadcasts the next message to the nodes in its cluster, and 
the simulation of the next tick (i + 1) begins.

Table 11.1 shows the chronology of the various control signals. Here, let T be the time when 
the simulation of the current clock starts and Hp be the maximum height of the spanning 
tree in each cluster for the given partition, and let each hop take 1 unit of time.

It follows from Table 11.1 that the time complexity of γ-synchronizer is 4Hp + 3. To com-
pute the message complexity, let Ep represent the set of all tree edges and intercluster edges in 
a given partition P of the network. Through each tree edge within a cluster, the messages ack, 
safe, cluster.safe, and next are sent out exactly once. In addition, through each intercluster 
edge, the message cluster.safe is sent twice, once in each direction. Therefore, the message 
complexity of the γ-synchronizer is O(|Ep|). Note that if there is a single cluster, then the 
γ-synchronizer reduces to a β-synchronizer. On the other hand, if each node is treated as a 
cluster, then the γ-synchronizer reduces to an α-synchronizer. To reduce both time and space 
complexities of a γ-synchronizer, it is important to look for a partition so that both Ep and Hp 
are small. In [Aw85], Awerbuch presented a partition algorithm that leads to Ep ≤ k ⋅ n and 
Hp ≤ logn/logk, where n = |V| and 2 ≤ k < n. To compute the overall complexity, one should 

TABLE 11.1 Timetable of the Control Signals in a γ-Synchronizer

Time Control Action 
T + 2 All processes receive <safe> messages.
T + Hp + 2 Leaders receive <safe> messages and find that their clusters are safe.
T + 2Hp + 2 Processes in a cluster receive <cluster.safe> message from the leader.
T + 2Hp + 3 <cluster.safe> is received from (and sent to) neighboring clusters.
T + 3Hp + 3 The leaders receive the <cluster.safe> message.
T + 4Hp + 3 All processes receive the <next> message and simulate the next tick.
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also take into account the initial one-time overhead of building these clusters, designating the 
intercluster edges, and computing the spanning trees within each cluster.

11.3.2.4 Performance of Synchronizer-Based Algorithms
The use of a synchronizer for running synchronous algorithms on asynchronous systems 
does not necessarily incur a significant performance penalty. To demonstrate this, con-
sider a synchronous BFS algorithm, and transform it to an asynchronous version using a 
synchronizer. The synchronous algorithm works as follows:

 1. A designated root starts the algorithm by sending a probe to each neighbor in tick 0.

 2. All nodes at distance d(d > 0) receive the first probe in tick (d − 1) and forward that 
probe to all neighbors (other than the sender) in tick d.

 3. The algorithm terminates when every node has received a probe, and the BFS tree 
consists of all edges through which nodes received their first probes.

The BFS tree is computed in D rounds (where D is the diameter of the graph), and it requires 
MS = O(|E|) messages.

Now, consider running this algorithm on an asynchronous system using an 
α-synchronizer—the synchronizer will simulate the clock ticks, and the action of the syn-
chronous algorithm will be scheduled at the appropriate ticks. Since T(α) = 3, the time 
complexity of the overall algorithm is TA = TS ⋅ T(α) = 3D asynchronous rounds. Also, 
M(α) = O(|E|), so the message complexity of the composite algorithm will be
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If instead of an α-synchronizer a β-synchronizer is used, then the time complexity of the 
composite algorithm will be TA = TS ⋅ T(β) = D ⋅ O(height) = O(n2), and the message com-
plexity of the composite algorithm will be
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Compare these figures with the complexities of a solution to the same problem without using 
the synchronizer. A straightforward algorithm for the asynchronous model starts in the same 
way as the synchronous version, but the additional complexity is caused by the arbitrary 
propagation delays of the channels. It is possible that a node receives a probe from some node 
with distance d and assigns to itself a distance (d + 1) but later receives another probe from a 
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node with a distance less than d, thus revoking the earlier decision. It is possible to devise an 
asynchronous algorithm than constructs a BFS tree in O(n2) time using O(n2) messages. As 
another example, consider the asynchronous Bellman–Ford algorithm whose time complexity 
is 2O(n) steps. The synchronous version of the Bellman–Ford algorithm has a time complex-
ity of TS = O(n) ⋅ O(|E|) rounds—so by running a synchronous Bellman–Ford algorithm on 
an α-synchronizer, it is possible to reduce the time complexity to O(n3) asynchronous rounds.

11.4 CONCLUDING REMARKS
Numerous types of coordination problems find use in the design of distributed applica-
tions. In this section, we singled out two such problems with different flavors.

Extrema (i.e., maxima of minima) finding is a simple abstraction of the problem of leader 
election, since it disregards failures. The problem becomes more difficult, when failures or 
mobility affects the network topology. For example, if a mobile ad hoc network failure gets 
partitioned into two disjoint components, then separate leaders need to be defined for each 
connected component to sustain a reduced level of performance. Upon merger, one of the 
two leaders will relinquish leadership. Algorithms addressing such issues differ in message 
complexities and depend on topological assumptions.

Synchronizer is an example of simulation. Such simulations preserve the constraints of the 
original system on a per node (i.e., local) basis, but may not provide any global guarantee. An 
example of a local constraint is that no node in a given tick will accept a message for a different 
tick from another node. A global constraint for a truly synchronous behavior is that when one 
node executes the actions of tick k, then every other node will execute the actions of the same 
tick. One can observe that the α-synchronizer does not satisfy this requirement, since a node 
at distance d > 1 may simulate an action of an earlier (or a later) clock tick. This hardly has an 
impact on the correctness of the simulation, since no node communicates with nonneighbors.

11.5 BIBLIOGRAPHIC NOTES
LeLann [Le77] presented the first solution to the maxima finding problem: Every initiator 
generates a token and sends to its neighbors, and a neighbor forwards a token when its own 
id is lower than that of the initiator; otherwise, it forwards a token with its own id. This leads 
to a message complexity of O(n2). Chang and Roberts algorithm [CR79] is an improvement 
over LeLann’s algorithm—its worst-case message complexity is O(n2), but its average-case 
complexity is O(n · logn). Garcia–Molina [G82] proposed the bully algorithm. Hirschberg 
and Sinclair [HS80] described the first algorithm for leader election on a bidirectional ring. 
Their algorithm had a message complexity of O(n · logn), the constant factor being approxi-
mately 8. Franklin’s algorithm [F82] had an identical complexity measure, but the constant 
was reduced to 2. Peterson’s algorithm [P82] was the first algorithm on a unidirectional ring 
with a message complexity O(n · logn) with a constant factor of 2. Subsequent modifications 
lowered this constant factor. The randomized algorithm for leader election is a simplifica-
tion of the stabilizing version presented by Dolev et al. in [DIM91].

Chou et al. [CCGZ90] and subsequently Tel et al. [TKZ94] studied the design of syn-
chronization on the ABD model of networks. The α-, β-, γ-synchronizers were proposed 
and investigated by Awerbuch [Aw85].
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EXERCISES
11.1 In a network of 100 processes, specify an initial configuration of Franklin’s algo-

rithm so that the leader is elected in the second round.
11.2 Consider Peterson’s algorithm for leader election on a unidirectional ring of 16 pro-

cesses 0 through 15. Describe an initial configuration of the ring so that a leader is 
elected in the fourth round.

11.3 Show that Chang–Roberts algorithm has an average complexity of O(n · logn).
11.4 Election is an exercise in symmetry breaking: Initially, all processes are equal, but at 

the end, one process stands out as the leader. Assume that instead of a single leader, 
we want to elect k leaders (k ≥ 1) on a unidirectional ring. Modify Chang–Roberts 
algorithm to elect k leaders. (Do not consider the obvious solution in which first a 
single leader gets elected and this leader picks (k − 1) other processes as leaders. The 
goal is to explore if there is a solution to the k leader election problem that needs 
fewer messages than the single leader algorithm.)

11.5 In a hypercube of n nodes, suggest an algorithm for leader election with a message 
complexity of O(n · logn).

11.6 Design an election algorithm for a tree of anonymous processes. (Of course, the tree 
is not a rooted tree; otherwise, the problem would have been trivial.) Think of ori-
enting the edges of the tree so that (1) eventually there is exactly one process (which 
is the leader) with all incident edges directed toward it and (2) every leaf process has 
outgoing edges only.

11.7 The problem of leader election has some similarities with the mutual exclusion 
problem. Chapter 7 describes Maekawa’s distributed mutual exclusion algorithm 
with O n( ) message complexity. Can we use similar ideas to design a leader election 
with sublinear message complexity? Explore this possibility.

11.8 In the following is the proposed design of a simple synchronizer:
a. Each process has a variable tick initialized to 0.
b. A process with tick = j exchanges messages for that tick with its neighbors.
c. When a process has sent and received all messages for the current tick, it incre-

ments tick (the detection of safe configuration is missing from this proposal).
Clearly, a process with tick = j can receive messages for both tick = j and tick = 
j + 1 from its neighbors. To satisfy the requirements of a synchronizer, the process 
will buffer the messages for tick = j + 1 for later processing, until the process has 
exchanged all messages for tick = j and incremented its tick.

Comment on the correctness of the simple synchronizer, and calculate its time 
and message complexities.

11.9 In the ideal ABD synchronizer, the physical clocks do not drift. As a result, 
after the initial synchronization, no messages are required to maintain the 
synchronization.
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Assume now that the physical clocks drift, so that the difference between a pair 
of clocks grows up to 1 in R time units, and each process simulates a clock tick every 
2δ time unit, where δ is the upper bound of the message propagation delay along 
any link. Calculate the maximum time interval, after which the ABD synchronizer 
will start malfunctioning.

11.10 Consider an array of processes 0, 1, 2, …, 2n − 1 that has a different type of synchrony 
requirement: We will call it interleaved synchrony. Interleaved synchrony is specified 
as follows: (1) neighboring processes should not execute actions simultaneously, and 
(2) between two consecutive actions by any process, all its neighbors must execute an 
action. When n = 4, a sample schedule is as follows:
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The computation is an infinite execution of such a schedule. Design a synchronizer 
to implement interleaved synchrony. Consider two different cases: (1) an ABD sys-
tem and (2) a system without physical clocks.

11.11 In the following network, a synchronous distributed algorithm takes 10 rounds. The 
edges are full duplex. The first round begins with each process sending a message to 
its neighbors. Thereafter, in each round, every process executes the actions 〈receive 
message, update a local variable, send message〉, until at the end of the last round, 
every process receives the messages from its neighbors, updates its local state, and 
then the computation terminates (Figure 11.7).

FIGURE 11.7 A network of processes.
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Assume that you are using an α-synchronizer to run the same algorithm on an 
asynchronous version of the system where message delays and processor speeds are 
arbitrary but finite and messages are never lost:
a. How many asynchronous rounds will the algorithm need to complete?
b. How many messages will be used in the synchronous version of the algorithm?
c. How many messages will be used in the asynchronous version of the algorithm?
Briefly justify your calculations.
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C h a p t e r  12

Fault-Tolerant Systems

12.1 INTRODUCTION
A fault is the manifestation of an unexpected behavior, and fault tolerance is a mechanism 
that masks or restores the expected behavior of a system following the occurrence of faults. 
Attention to fault tolerance or dependability has drastically increased over the recent years 
due to our increased dependence on computers to perform critical as well as noncritical 
tasks. Also, the increase in the scale of such systems indirectly contributes to the rising 
number of faults. Advances in hardware engineering can make the individual components 
more dependable, but it cannot eliminate them altogether. Bad system designs and behav-
ioral patterns like mobility can also contribute to failures.

Historically, models of failures have been linked with the level of abstraction in the 
specification of a system. A VLSI designer may focus on stuck-at-0 and stuck-at-1 faults 
where the outputs of certain gates are permanently stuck to either a 0 or a 1 regardless of 
input variations. A system-level hardware designer, on the other hand, may be ready to 
view a failure as any arbitrary or erroneous behavior of a module as a whole. A dip in the 
power supply voltage or radio interferences due to lightning or a cosmic shower can cause 
transient failures by perturbing the system state without causing any permanent damage 
to the hardware system. Messages propagating from one process to another may be lost in 
transit. Finally, even if hardware does not fail, software may fail due to code corruption, 
system intrusions, improper or unexpected changes in the specifications of the system, 
environmental changes, or human error.

Failures are a part of any system—the real issue is the frequency of the failures and their 
consequences. The computer system ENIAC had a mean time between failures* (MTBF) of 
5 min. The real interest on dependable computing started from the time of space explo-
ration, where the cost of a failure was unacceptably high. The widespread use of com-
puters in the financial world as well as in critical systems like nuclear reactors, air-traffic 

* MTBF is a well-known metric for system reliability. The associated term is mean time to repair (MTTR). In any viable 
system, MTTR has to be much less than MTBF.
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control, avionics, or hospital patient monitoring systems where human lives are directly 
affected has renewed interest in the study of fault tolerance. Despite all textbook studies, 
the sources of failures are sometimes obscure or at best unforeseen, although the conse-
quences can be devastating. This calls for sound system design methodology and sound 
engineering practices.

Before we discuss how to tolerate faults, we present a characterization of the various 
kinds of faults that can occur in a system.

12.2 CLASSIFICATION OF FAULTS
Our view of a distributed system is a process-level view, so we begin with the description 
of certain types of failures that are visible at the process level. Note that each type of failure 
at any level may be caused by a failure at some lower level of design. Thus, a process may 
cease to produce an output when a wire in the circuit breaks or a dust speck bridges two 
wires on a printed circuit board. A complete characterization of the relationship between 
faults at different levels is beyond the scope of our discussion. The major classes of failures 
are as follows:

Crash failure: A process undergoes crash failure when it permanently ceases to execute 
its actions. This is an irreversible change. There are several variations in this class. In one 
variation, crash failures are treated as reversible, that is, a process may play dead for a finite 
period of time, and then resume operation, or it may be repaired. Such failures are called 
napping failure.

In an asynchronous model, crash failures cannot be detected with total certainty, since 
there is no lower bound of the speed at which a process can execute its actions. The design 
of systems tolerating crash failures would have been greatly simplified if processes could 
correctly detect whether another process has crashed. In a synchronous system where 
processor speeds and channel delays are bounded, crash failure can be detected using 
timeout. One such implementation requires processes to periodically broadcast a heart-
beat signal that signifies I am alive. When other correct processes fail to receive the heartbeat 
signal within a predefined timeout period, they conclude that the process has crashed.

In general, internal failures within a processor may not lead to a nice version of a faulty 
behavior—it can sometimes be quite messy. Since most fault-tolerant algorithms are 
designed to handle crash failures only, it would have been nice if any arbitrary internal 
fault within a processor could be transformed to a crash failure (by incorporating extra 
hardware and/or software in the processor box). This is the motivation behind the more 
benign model of fail-stop processors. A fail-stop processor has two properties: (1) it halts 
program execution when a failure occurs, and (2) the internal state of the volatile storage is 
irretrievably lost. Schlichting and Schneider [SS83] described an implementation of a k-fail-
stop processor—it satisfies the fail-stop properties with high probability when k or fewer 
faults occur, and the system can detect when another fail-stop processor halts. Fail-stop is a 
simple abstraction meant for simplifying the design of fault-tolerant algorithms. If a system 
cannot tolerate fail-stop failures, then there is no way that it can tolerate crash failures.



Fault-Tolerant Systems   ◾   251  

Omission failure: Consider a transmitter process sending a sequence of messages to a 
receiver process. If the receiver does not receive one or more of the messages sent by the 
transmitter, then an omission failure occurs. In real life, this can be either caused by trans-
mitter malfunction or due to the properties of the medium. For example, limited buffer 
capacity in the routers can cause some communication systems to drop packets. In wireless 
communication, messages are lost when collisions occur in the MAC layer or the receiv-
ing node moves out of range. Techniques to deal with omission failures form a core area of 
research in networking.

Transient failure: A transient failure can perturb the global state in an arbitrary way. The 
agent inducing this failure may be momentarily active (like a power surge, or a mechanical 
shock, or lightning), but it can make a lasting effect on the global state. In fact, omission 
failures are special cases of transient failures, when the channel states are perturbed.

Empirical evidence suggests that transient faults occur frequently. Transient faults cap-
ture the effects of environmental hazards such as gamma rays, whose duration in time is 
limited. Transient failures are also caused by an overloaded power supply or due to weak 
batteries. Hardware faults are not the only source of transient faults. Transient failures also 
capture state corruption that occurs when software components fail. Gray [G85a] called 
them Heisenbugs, a class of temporary internal faults that are intermittent in nature. They 
are essentially permanent faults whose conditions of activation occur rarely or are not 
easily reproducible and so difficult to detect in the testing phase. Gray and Reuter [GR93] 
estimated that over 99% of bugs in IBM’s DB2 production code are supposedly nondeter-
ministic in nature and are thus transient.

Byzantine failure: Byzantine failures represent the weakest of all the failure models that 
allow every conceivable form of erroneous behavior. As a specific example, assume that 
process i multicasts the value x of a local variable to each of its neighbors. Then the follow-
ing are examples of inconsistent behaviors:

• Two distinct neighbors j and k receive values x and y, where x ≠ y.

• Every neighbor receives a value z, where z ≠ x.

• One or more neighbors do not receive any data from process i.

Some possible causes of the aforementioned kind of byzantine failures are as follows: 
(1) Total or partial breakdown of a link connecting i with its neighbors. (2) Software prob-
lems in process i. (3) Hardware synchronization problems—assume that every neighbor 
is connected to the same bus, and reading the same copy of a variable x sent out by i, but 
since the clocks are not perfectly synchronized, they may not read the value of x exactly at 
the same time. If the value of x varies with time and the local clocks are not perfectly syn-
chronized, then different neighbors of i may receive different values of x from process i. 
(4) Malicious actions by process i.
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Software failure: There are several reasons that lead to software failure:

 1. Coding errors or human errors: There are documented horror stories of losing a space-
craft because the program failed to use the appropriate units of physical parameters. 
As an example, on September 23, 1999, NASA lost the $125 million Mars orbiter 
spacecraft because one engineering team used metric units while another used 
English units leading to a navigation fiasco, causing it to burn in the atmosphere.

 2. Software design errors: Mars pathfinder mission landed flawlessly on the Martial sur-
face on July 4, 1997. However, later its communication failed due to a design flaw in 
the real-time embedded software kernel VxWorks. The diagnosis was that the prob-
lem occurred due to priority inversion, when a medium priority task could preempt 
a high priority one.

 3. Memory leaks: The execution of programs suffers from the degeneration of the run-
time system due to memory leaks, leading to a system crash. Memory leak is a phe-
nomenon by which processes fail to free up the entire physical memory that has been 
allocated to them. This effectively reduces the size of the available physical memory 
over time. When the available memory falls below the minimum required by the 
system or an application, a crash becomes inevitable.

 4. Problem with the inadequacy of specification: Assume that a system running program 
S is producing the intended results. If the system suddenly fails to do so even if there 
is no hardware failure or memory leak, then there may be a problem with specifica-
tions. If {P} S {Q} is a theorem in programming logic, and the precondition P is inad-
vertently weakened or altered, then there is no guarantee that the postcondition Q 
will always hold!

A classic example of software failure is the so-called Y2K bug that rocked the world and 
kept millions of service providers in an uneasy suspense for several months as the year 
2000 dawned. The problem was one of inadequate specifications: When programs were 
written in the twentieth century for financial institutions, power plants, or process control 
systems, the year 19xy was most often coded as xy so 1999 will appear as 99. At the begin-
ning of the year 2000, this variable will change from 99 to 00 and the system will mistake 
it for the year 1900. This could potentially upset schedules, stall operations, and trigger 
unknown side effects. At least one airline grounded all of its flight on January 1, 2000, for 
the fear of the unknown. Prior to January 1, 2000, millions of programmers were hired to 
fix the potential problem in programs, even if in many cases the documentation was miss-
ing. As a result, the damages were miniscule compared to the hype.

Note that many of the failures like crash, omission, transient, or byzantine can be 
caused by software bugs. For example, a badly designed loop that does not terminate can 
mimic a crash failure in the sender process. An inadequate policy in the router software 
can cause packets to drop and trigger omission failure. And we have already observed that 
Heisenbugs (permanent faults whose conditions of activation occur rarely or are not easily 
reproducible) cause transient failures.
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Temporal failure: Real-time systems require actions to be completed within a specific 
amount of time. When this deadline is not met, a temporal failure occurs. Like software 
failures, temporal failures also can lead to other types of faulty behaviors.

Security failure: Virus and other kinds of malicious software creeping into a computer 
system can lead to unexpected behaviors that conform to the definition of a fault. The 
effects range from allowing an intruder to eavesdrop or steal passwords to granting a com-
plete takeover of the computer system. Such compromised systems can exhibit arbitrary 
behavior.

Some failures are repeatable, whereas others are not. Failures caused by incorrect soft-
ware are often repeatable, whereas those due to transient hardware malfunctions or due to 
race conditions may not be so and therefore not detected during debugging. In the domain 
of software failures, Heisenbugs are difficult to detect. Finally, human errors play a big 
role in system failure. In November 1988, much of the long-distance service along the East 
Coast was disrupted when a construction crew accidentally severed a major fiber optic 
cable in New Jersey; as a result, 3,500,000 call attempts were blocked. On September 17, 
1991, AT&T technicians in New York attending a seminar on warning systems failed to 
respond to an activated alarm for 6 h. The resulting power failure blocked nearly 5 million 
domestic and international calls and paralyzed air travel throughout the Northeast, caus-
ing nearly 1170 flights to be canceled or delayed.

12.3 SPECIFICATION OF FAULTS
For the purpose of modeling fault tolerance, a system specification consists of (1) a set of 
system actions S representing the fault-free (also called failure-intolerant) system and (2) a 
set of fault actions F that mimic the faulty behavior. The faulty system consists of the union 
of all the actions of both S and F. Readers are cautioned that this is only a simulation of the 
faulty behavior and has no connection with how the fault actually occurs in the physical 
system. Such simulations use auxiliary variables that are not a part of the real system. Also, 
such specifications are not unique—many different specifications are possible for the same 
faulty system. We present a few examples here:

Example 12.1

Assume that a system, in the absence of any fault, sends out the message “a” infinitely often 
(i.e., the output is an infinite sequence a a a a...). However, a failure occasionally causes a 
message to change from “a” to “b”. Such a faulty system can be specified as follows:

 program faulty system 1;
 define x : boolean; a b: messages
 initially x = true;

S: do x → send a
F: [] true → send b
 od
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With a scheduler that is at least weakly fair, the difference between faulty and the 
fault-free systems becomes perceptible to the outside world. For the same system, 
one can model a crash failure by specifying the F-action as true → x: = false. 
After  F is executed, the system ceases to produce an output—a condition that 
cannot be reversed using the actions of S or F.

Example 12.2

Under the broad class of byzantine failures, specific faulty behaviors can be modeled 
using appropriate specifications. In the present example, the fault-free system exe-
cutes a nonterminating program by sending out an infinite sequence of integer 
 values 0, 1, 2, 0, 1, 2, .... The system failure changes the 2s to 9s.

 program faulty system 2
 define k: integer {value contained in a message}
 x: boolean {initially x = true}
 initially x = true, k = 0
S: do k<2 → send k; k: = k + 1
 [] x ∧(k = 2) → k: = 0
F: [] x → x: = false
 [] ¬x ∧(k = 2) → send 9; k: = 0
 od

Example 12.3

Temporal failures are detected using a special predicate timeout, which becomes true 
when an event does not take place within a predefined deadline. Consider a process i 
broadcasting a message every 60 s to all of its neighbors. Assume that the message 
propagation delay is negligibly small. If process j does not receive any message from 
process i within, say, 61 s (i.e., it keeps a small allowance before passing a verdict), 
a temporal failure occurs. The specification follows:

 program faulty system 3
 {for process i};
 define T(i): timer (value in seconds}
S: do T(i) = 0 → send message to j; T(i): = 60
  {Every second T(i): = T(i)−1}
F [] true→T(i): = 65
 od
 {for process j};
 define T(j): timer (value in seconds}
S: do (T(j)>0)∧ message received from process i → T(j): = 61
  {Every second T(j): = T(j)−1}
F: [] true →T(j): = 55
 od
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Define timeout(i, j) ≡ (T = 0)∧ no message received from process i. The predicate 
timeout(i, j) will be true whenever i or j executes the F-action once, and then the nor-
mal countdown continues. In actual practice, a temporal failure can be caused by an 
increase in the propagation delay or by a loss of synchronization between the sender 
and the receiver clocks.

12.4 FAULT-TOLERANT SYSTEMS
A system that does not tolerate failures is a fault-intolerant system. In such systems, the 
occurrence of a fault violates some liveness or safety property. Let P be the set of configura-
tions of the fault-intolerant system reachable via the specified system actions S. Given a set 
of fault actions F, the fault span Q corresponds to the largest set of configurations that the 
system can get into. It is a measure of how bad the system can become. The following two 
conditions are trivially true:

 1. P ⊆ Q.

 2. Q is closed under the actions of both S and F.

It is not possible to design a system that can tolerate all kinds of failures. A system is called 
F-tolerant (i.e., tolerates the fault action F) when the system maintains or returns to its 
original configuration (i.e., P holds) after all F-actions stop executing. There are four major 
types of fault tolerance:

 1. Masking tolerance

 2. Nonmasking tolerance

 3. Fail-safe tolerance

 4. Graceful degradation

12.4.1 Masking Tolerance

A fault f is masked if its occurrence has no impact on the application, that is, P = Q. Masking 
tolerance is important in many safety-critical applications where the failure can endanger 
human life or cause massive loss of property. An aircraft must be able to fly even if one 
of its engines malfunctions. A patient monitoring system in a hospital must not record 
patient data incorrectly even if some of the sensors or instruments malfunction, since this 
can potentially cause an improper dose of medicine to be administered to the patient and 
endanger his or her life. Masking tolerance preserves both liveness and safety properties of 
the original system.

12.4.2 Nonmasking Tolerance

In nonmasking fault tolerance, faults may temporarily affect the application and violate 
the safety property, that is, P ⊂ Q. However, liveness is not compromised, and eventually, 
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normal behavior is restored (Figure 12.1). Consider that while you are watching a movie, 
the server crashed, but the system automatically restored the service by switching to a 
standby server. The temporary glitch may be acceptable, since the failure did not have 
any catastrophic consequence. As another example, consider the routing of packets from a 
source to a destination node. Let a failure create a cycle in the route and trap a few packets. 
However, the algorithms for routing table computation broke the cycle and the packets 
eventually reached the destination. The net impact of the failure was an increase in the 
message propagation delay.

There are different types of nonmasking tolerance. In backward error recovery, snapshots 
of the system are periodically recorded on an incorruptible form of storage, called stable 
storage. When a failure is detected, the system rolls back to the last configuration saved on 
the stable storage (to undo the effect of the failure), and the computation progresses from 
that point. The important issue here is to make the history of the computation right. In 
forward error recovery, when a fault occurs, the system does not look back or try a rerun, 
since minor glitches are considered inconsequential, as long as the normal operation is 
eventually restored. Forward recovery systems that guarantee recovery from an arbitrary 
initial configuration are known as self-stabilizing systems.

12.4.3 Fail-Safe Tolerance

Certain faulty configurations do not affect the application in an adverse way and are there-
fore considered harmless. A fail-safe system relaxes the tolerance requirement by only 
avoiding those faulty configurations that may have catastrophic consequences, even when 
failures occur. For example, if at a four-way traffic crossing, the lights are green in both 
directions, then a collision is possible. However, if the lights are red in both directions, 
then at best traffic will stall, but will not have any catastrophic side effect.

Given a safety specification P, a fail-safe system preserves P despite the occurrence of 
failures. However, there is no guarantee that liveness will be preserved. Sometimes, halt-
ing progress and leaving the system in a safe state may be the best possible way to cope 
with failures. The ground control system of the Ariane 5 launcher was designed to mask 
all single faults, but when two successive component failures occur, it would postpone the 
launch (this is safer than a mishap in the space).

Fault occurs here Fault occurs here

Recovery completes here Recovery completes here

FIGURE 12.1 An illustration of fault recovery.



Fault-Tolerant Systems   ◾   257  

12.4.4 Graceful Degradation

There are systems that neither mask nor fully recover from the effect of failures. Such sys-
tems exhibit a degraded behavior that falls short of the normal behavior, but are still con-
sidered acceptable. The notion of acceptability is highly subjective and is entirely dependent 
on the user running the application. Some examples of degraded behavior are as follows:

 1. Consider a taxi booth where customers call to order a taxi. Under normal conditions, 
(i) each customer ordering a taxi must eventually get it, and (ii) these requests must 
be serviced in the order in which they are received at the booth. In case of a failure, a 
degraded behavior that satisfies only condition (i) but not (ii) may be acceptable.

 2. While routing a message between two points in a network, a program computes the 
shortest path. In the presence of a failure, if this program returns another path that 
is not the shortest path but one that is marginally longer than the shortest one, then 
this may be considered acceptable.

 3. A pop machine returns a can of soda when a customer inserts 75 cents in quarters, 
dimes, or nickels. After a failure, if the machine refuses to accept dimes and nickels, 
but returns a can of soda only if the customer deposits three quarters, then it may be 
considered acceptable.

 4. An operating system switches to a safe mode when users cannot create or modify 
files, but can only read the files that already exist.

12.4.5 Detection of Failures in Synchronous Systems

The implementation of fault tolerance becomes easier if there exists some mechanism for 
detecting failures. This in turn depends on specific assumptions about the degree of syn-
chronization: like the existence of synchronized clocks, or the lower bound on the pro-
cessor speed, or upper bound on message propagation delays, as described in Chapter 4. 
Consider, for example, a crash failure. Without any assumption about the lower bound of 
process execution speeds and the upper bound of message propagation delays, it is impos-
sible to detect a crash failure, because it is not feasible to distinguish between a crashed 
process and a nonfaulty process that is executing actions very slowly. When these bounds 
are known, timeout can be used to detect crash failures.

As another example, consider how omission failures can be detected. The problem is as 
hard as the detection of crash failures, unless the channels are FIFO or an upper bound of the 
message propagation delay δ is known. With a FIFO channel that is initially empty, a sender 
process i tags every message m with a sequence number seq as described in the following:

do true → send 〈m[seq],seq〉; seq: = seq + 1 od

If a receiver process receives two consecutive messages whose sequence numbers are i and j, 
and j ≠ i + 1, then an omission failure is detected. With non-FIFO channels, if a message 
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with sequence number i is received, but the previous message does not arrive within δ time 
units, then the receiver detects an omission failure.

Compared to crash failures, byzantine failures are much harder to deal with. In syn-
chronous distributed systems where an upper bound on the message propagation delays or 
lower bound on processor speeds exists, some forms of byzantine failures can be detected. 
These are based on the various consensus protocols available in the published literature for 
tolerating byzantine failures. For asynchronous distributed systems, failure detectors and 
their use in solving consensus problems have received substantial attention. We postpone 
further discussions on failure detectors to Chapter 13.

The design of a fault-tolerant system requires knowledge about the application and its 
expected behavior, the fault scenario, and the type of tolerance desired. In the following 
sections, we will discuss the implementation of fault tolerance for crash and omission fail-
ures, and examine their complexities. Byzantine agreement and self-stabilizing systems 
will be presented in Chapters 13 and 17, respectively.

12.5 TOLERATING CRASH FAILURES
A simple and age-old technique of tolerating crash failures is to replicate the process or 
functional modules, with the idea that the functioning modules will make up for the non-
functional ones. Double modular redundancy (DMR) can mask a single crash, and TMR 
can mask any single fault. The ideas are explained in the following text:

12.5.1 Double and Triple Modular Redundancy

Consider a process B that receives an input value x, computes the function y = f(x), and 
sends it to process C. If B crashes, then C does not receive the value of y. To mask the effect 
of B’s crash, replace process B by a pair of replicas B0 and B1 (Figure 12.2a)—such a system 
can tolerate a single crash. With n such replicas (n > 1) of B, it is possible to tolerate the 
crash of m replicas, where m ≤ n − 1.

Extending this idea, if there are three replicas of B (Figure 12.2b) and any one of them 
malfunctions (this includes not only crash but also arbitrary failures), then process C will 

V

B0

B1C C

B2

B0

B1

y =  f (x)

y =  f (x)

x x

y =  f (x)

y =  f (x)

y =  f (x)

(a) (b)

FIGURE 12.2 (a) DMR that tolerates a single crash. (b) TMR that tolerates a single failure of arbi-
trary type: V is the voting unit.
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receive the correct value of y = f(x) since the majority voting unit V will vote out the bad 
value. This is the basic idea of TMR. A generalization of this approach is n-modular redun-
dancy that masks m arbitrary failures, where n ≥ 2m + 1.

Can the unit that computes the majority vote also fail? Yes. However, the voting 
unit is considered to be a logical part of C. If C fails, then the result of the vote does 
not matter.

12.6 TOLERATING OMISSION FAILURES
Assume that a sender process S sends out a sequence of messages m[0], m[1], m[2], … to 
a receiver process R (Figure 12.3). If the upper bound of the message propagation delay 
is not known and the channels are not FIFO, then the receiver must send acknowledg-
ments to the sender to notify the arrival of a message. To detect the nonarrival of a mes-
sage, process S can at best make a good guess of the round-trip propagation delay and 
set a timer accordingly. If there is a timeout, the sender retransmits the message. Due 
to the transient nature of the failure, it is assumed that if a message is sent a bounded 
number of times, then it will eventually reach the receiver and will be delivered to the 
application at the receiving end. In case the sender’s guess about the round-trip delay is 
incorrect and the timeout is too early, retransmissions may lead to duplicate messages 
on the channel. In this context, a reliable channel from S to R should meet the following 
three requirements:

 1. No loss: The receiver eventually delivers each message sent out by the sender.

 2. No duplication: The receiver delivers each message sent by the sender exactly once.

 3. No reordering: The receiver always delivers the message m[i] before m[i + 1].

Thus, if S sends out the sequence a b c d e, then the first condition rules out R accepting this 
sequence as a c d e, the second condition rules out the possibility of R accepting it as a b b 
c c c d e, and the third condition prevents R from accepting it as a c e b d.

S R

m[0]
m[1]
m[2]

m[2]

ack

Deliver
Next

FIGURE 12.3 Implementation of a reliable channel from S to R.
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12.6.1 Stenning’s Protocol

Stenning’s protocol provides an implementation of a reliable channel. The receiving process R, 
after receiving each message m[i], sends an acknowledgment back to S and decides whether 
to deliver it to the upper layer. However, not only messages but also acknowledgments can 
disappear, making the game a bit tricky. Here is a description of Stenning’s protocol:

program Stenning’s protocol;
{program for the sender S}
define ok : boolean, next, j : integer
 m: array[0..∞] of messages, ack: acknowledgment
initially next = 0, ok = true, and both channels (S,R) and (R,S) are empty
do ok → send (m[next],next); ok: = false
[] (ack, j) received → if (j = next)→ ok: = true; next: = next + 1
 [] (j≠next)→ skip
 fi
[] timeout(R,S) → send (m[next], next)
od

{program for the receiver R}
define s,r : integer {message sequence numbers}
initially r = 0;
do (m[],s) received ∧ (s = r) → deliver m[]; send (ack,r); r: = r+1
[] (m[],s) received ∧ (s ≠ r)→ send (ack,r − 1)
od

Theorem 12.1

Stenning’s protocol implements a reliable channel.

Proof: (No loss) If R does not receive m[i], then it does not send (ack, i), which triggers a 
retransmission of m[i]. After a bounded number of retransmissions, one copy of m[i] must 
be received and delivered by R.

(No duplication and no reordering) Once R delivers m[i], it increments r to (i + 1). Note 
that R does not deliver the received message unless its sequence number matches r, so 
duplicate messages are rejected. For the same reason, R always delivers the message m[i] 
before m[i + 1]. Therefore, the no reordering criterion holds.

Finally, we demonstrate that the progress property is satisfied. Assume that S sent m[i], 
it was received by R, and R sent (ack, i), but the ack was lost in transit. So S resent m[i]. But 
in the meantime, R increased the value of r to (i + 1) and was expecting to receive m[i + 1], 
so it would reject the duplicate copy of m[i]. By sending a replica of (ack, i), R guarantees 
that eventually S receives it and then sends m[i + 1]. This  guarantees progress. ◾ 

Stenning’s protocol is also commonly known as the stop-and-wait protocol. It is inef-
ficient, since even in the best case, the sender has to wait for one round-trip delay to send 
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each message, leading to a low throughput. In real life, different variations of this basic idea 
are used. One such variation is the sliding window protocol.

12.6.2 Sliding Window Protocol

The sliding window protocol is a widely used transport layer protocol for implementing a 
reliable channel between a pair of processes. It is a generalization of Stenning’s protocol 
and uses the same mechanism to deal with the loss or reordering of messages. In addition, 
the sliding window protocol has provisions to improve the transmission rate and restore 
the message order at the receiving end without overflowing its buffer space. The primary 
feature is as follows: The sender continues the send action without receiving the acknowl-
edgments of at most w (w > 0) outstanding messages, where w is called the window size. If 
no acknowledgment to the previous w messages is received within the timeout period, then 
the sender resends those w messages (Figure 12.4).

program sliding window;
{program for process S}
define next, last, j, w : integer; {w is the constant window size}
 m: array[0..∞] of messages, ack: acknowledgment
initially next = 0, last = −1, w > 0, channels (S,R) and (R,S)are empty;
do last + 1 ≤ next ≤ last + w → send (m[next],next); next: = next + 1
[](ack,j) received → if j>last → last: = j
 []j ≤ last → skip
 fi
[]timeout(R,S) → next: = last + 1 {Retransmission begins}
od

{program for process R}
define s,r : integer {message sequence numbers}
initially r = 0;
do (m[],s) received ∧ (s = r) → deliver m[]; send (ack,r); r: = r + 1
[] (m[],s) received ∧ (s ≠ r)→ send (ack,r − 1)
od

m[0] − m[3] m[4] − m[7]

ack[0] − ack[3] ack[4] − ack[7]

Sender S

Receiver R

Time

FIGURE 12.4 The trace of a sliding window protocol with window size 4.
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Theorem 12.2

Program sliding window implements a reliable channel.

Proof (by induction): Basis: R eventually receives and delivers m[0]. This is because, if R 
does not receive m[0], then it does not send any acknowledgment, which triggers a time-
out at S followed by a retransmission of m[0]. In a bounded number of transmissions, R 
receives and delivers m[0]. Using the arguments in the proof of Stenning’s protocol, it is 
easy to establish that m[0] is delivered exactly once.

Induction hypothesis: Assume that R has delivered every message m[0] through m[k] (k > 0) 
exactly once and in the ascending order. S now sends m[k + 1] since the condition last < k + 
1 ≤ last + w holds. We need to show that eventually R accepts m[k + 1].

Induction step: If m[k + 1] is lost in transit, then no guard of R is not enabled. When the 
remaining messages in the current window are sent by S, the acknowledgment (ack, k) 
returned by R does not cause S to increment the value of last beyond k. Eventually, timeout 
is enabled for process S, and it retransmits messages m[last + 1] through m[last + w]—this 
includes m[k + 1]. In a finite number of rounds of retransmission, m[k + 1] is received and 
delivered by R. Since the condition r = k + 1 is asserted exactly once, the message m[k + 1]
will be accepted exactly once. ◾

A concern here is that the sliding window protocol uses unbounded sequence num-
bers. This raises the question: Is it possible to implement a window protocol using bounded 
sequence numbers, such that it withstands the loss, duplication, and reordering of mes-
sages? The answer is no. To understand why, consider the informal argument: To withstand 
loss (which cannot be distinguished from indefinitely large propagation delay), messages 
have to be retransmitted, so for every message (m[],k) sent by the sender, there may be a 
duplicate (call it (m′[], k) in the channel. Also, if the sequence numbers are bounded, then 
they will be recycled, so at some point in the future, there will be another new message 
(m″[], k) sent after (m[], k) and it bears the same sequence number k.

Suppose that m, m′, and m″ are in the channel. Since the channel is not FIFO, these 
messages can arrive in any order. If the receiver receives and delivers m, then it should not 
deliver m′ to avoid duplicate reception of the same message, but then it will also not deliver 
the new message m″ since m′ and m″ have the same sequence numbers, and they are indis-
tinguishable! Using bounded sequence numbers, there is no way to institute a mechanism 
by which m″ is delivered but m′ is rejected. This leads to the following theorem:

Theorem 12.3

If the communication channels are non-FIFO, and the message propagation delays are 
arbitrarily large, then using bounded sequence numbers, it is impossible to design a win-
dow protocol that can withstand the loss, duplication, and reordering of messages.
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Several variations of the sliding window protocol are used in practice. One common 
variation if for the receiver to maintain a window that defines the range of message sequence 
numbers (instead of a single number) that the receiver is ready to accept. The messages 
received within this window are buffered until they can be delivered. In the selective repeat 
version, when the sender notices the absence of an acknowledgment for one or more mes-
sages during a timeout, it selectively transmits only the missing messages. This conserves 
bandwidth at the expense of buffer space.

12.6.3 Alternating Bit Protocol

The alternating bit protocol is a special version of the sliding window protocol, for which 
w = 1. It works only when the links are FIFO, which rules out message reordering. It is a 
suitable candidate for use in the data-link layer.

The unbounded sequence number was a major hurdle in implementing the sliding win-
dow protocols on non-FIFO channels. With FIFO channels, the alternating bit protocol 
overcomes this problem by appending only a 1-bit sequence number to the body of the 
message. The protocol is described as follows:

program ABP;
{program for the sender S}
define sent, b, j ∈ {0, 1}, next : integer;
initially next = 0, sent = 1, b = 0, and channels (S,R) and (R,S) are empty;
do sent ≠ b → send (m[next], b); next: = next+1; sent: = b
[] (ack,j) received ∧ (j = b) → b: = 1 − b
[] timeout(R,S) → send (m[next − 1], b)
od

{program for the receiver R}
define s,r ∈{0, 1}
initially r = 0;
do (m[],s) received ∧ (s = r) → deliver m[]; send (ack,r); r: = 1 − r
[] (m[],s) received ∧ (s ≠ r)→ send (ack, 1 − r)
od

Without going through a formal proof, we demonstrate why the FIFO property of the 
channel is considered essential for the alternating bit protocol.

Consider the global state of Figure 12.5 reached in the following way: m[0] was  transmitted 
by S and accepted by R, but its acknowledgment (ack, 0) was delayed—so S transmitted m[0] 
once more. When (ack, 0) finally reached S, it sent out m[1]. In general, the state of channel 
(S, R) is a concatenation of zero or more (m[i], b), followed by zero or more (m[i + 1], (1 − b)).

If the channels are not FIFO, then (m[1], 1) may reach R before the duplicate copy of 
(m[0], 0) reaches R. R will accept it and send it back (ack, 1) to S. On receipt of this (ack, 1), 
S will send out (m[2], 0). When the duplicate copy of (m[0], 0) reaches R, and R accepts it, as 
it mistakes it for m[2] since both m[0] and m[2] have the same sequence number 0! Clearly, 
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this possibility is ruled out when the channels are FIFO—the receiver R is certain that the 
received packet contains m[2] and not a duplicate copy of m[0].

12.6.4 How TCP Works

TCP is the most widely used connection management protocol used on the Internet. It 
supports the end-to-end logical connection between two processes running on any two 
computers on the same network or on different networks. It uses the main idea of sliding 
windows and handles a wide variety of channel failures or perturbations that include the 
loss and reordering of packets. The link is created by a connection establishment phase and 
terminated by a connection-closing phase.

A key issue is the ability to generate unique sequence numbers for packets. A sequence 
number is safe to use if it is not identical to one of the sequence numbers that is currently in 
use. There are various approaches for generating unique sequence numbers. Some of these 
do not provide absolute guarantees, but sequence numbers are unique with a high prob-
ability. For example, if the sequence number is a randomly chosen 64-bit pattern, then it 
is highly unlikely that the same sequence number will be used again during the lifetime of 
the application. The guarantee can be further consolidated if the system knows the upper 
bound (δ) of the message propagation delay across the channel. Every sequence number is 
automatically flushed out of the system after an interval 2δ from the time it was generated. 
It is even more unlikely for two identical random 32-bit or 64-bit sequence numbers to be 
generated within a time 2δ.

TCP uses a connection establishment phase outlined in Figure 12.6. The sender S sends 
a synchronization message (SYN, seq = x) to request a connection, x being the sequence 
number proposed by S. The receiver returns its acceptance by proposing a new sequence 
number seq = y (the sender can verify its uniqueness by checking it against a pool of used 
ids in the past 2δ time period; otherwise, a cleanup is initiated) and appending it to x, so 
that the sender can recognize that it was a response to its recent request. The (ack = x + 1) 
message is a routine response reflecting the acceptance of the connection request with 
a sequence number x. If the receiver responds with (seq = y, ack = z) and z ≠ x + 1, then 
the sender recognizes it as a bad message, ignores it, and waits for the correct message. 
To complete the connection establishment, the sender sends an (ack, y + 1) back to the 

S R

m[0], 0
m[0], 0

m[1], 1

ack, 0 ack, 0

m[1], 1

FIGURE 12.5 A global state of the alternating bit protocol.
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receiver, indicating that it accepted the proposed sequence number y. This is called a three-
way handshake. The sender starts sending data using the starting sequence number x + 1. 
To close a TCP connection, the initiator sends a FIN packet. The connection closes only 
when an ack has been sent by R and received by the S.

The initial 32-bit sequence numbers x and y are randomly chosen integers. When a 
machine crashes and reboots, a randomly chosen 32-bit sequence number is most likely to 
be different from any sequence number used in the recent past. In case a request packet or 
an accept packet is lost, the packet is retransmitted after a timeout period.

A knowledge of δ (obtained by monitoring the round-trip delay) helps choose an appro-
priate value of timeout. If the timeout period is too small, then unnecessary retransmis-
sions will drastically increase the congestion, whereas a large timeout period will unduly 
slow down the throughput. The choice is made using adaptive retransmission. TCP also 
allows flow control by permitting the receiver to throttle the sender and control the win-
dow size depending on the amount of buffer space it has to store the unprocessed data. For 
details on flow control, read a standard textbook on networking like [PD96].

12.7 CONCLUDING REMARKS
The specification of faulty behavior using auxiliary variables and fault actions only mimic 
the faulty behavior and has no connection with the physical cause of the failure. Adding 
additional actions to overcome the effect of a failure mostly works at the model level—only 
in limited cases, they can be translated into the design of a fault-tolerant system.

There are several different views regarding the taxonomy of failures. For example, 
omission failures may not always result in the loss of a message, but may include the 

(SYN, seq = x)

ack = y +1

SYN, seq = y, ack = x + 1

m[ ], seq = x + 1, ack = y + 1

SYN

SYN − ACK

ACK End of three-way handshake

m[ ], seq = y + 1, ack = x + 2

FIN

FIN − ACK

ACK

FIN, seq = y + t, ack = x + t

FIN, seq = y + t + 1, ack = x + t + 1

ack = x + t + 2 Connection closed

Message
communication

S R

FIGURE 12.6 The exchange of messages in TCP.
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skipping of one or more steps by a process, which leads to an arbitrary pattern of behav-
ior that fits the byzantine failure class.

No fault-tolerant system can be designed without some form of redundancy. The 
redundancy can be in hardware (like spare or standby units), or in the amount of space 
used per process, or in the time taken by the application. The type of fault tolerance to 
be used largely depends on the application and its users. It is quite possible that differ-
ent types of tolerances are desirable against different kinds of faults. As an example, 
one may expect a system to exhibit masking tolerance against all single faults, but 
accept a stabilizing behavior when multiple faults occur, since the cost of implementing 
masking tolerance for multiple faults may be too high. This is known as multitolerance.

Stabilization and checkpointing represent two opposing kinds of scenario in nonmask-
ing tolerance. Checkpointing relies on history and recovery leads to an auditable history 
of the computation. Stabilization, on the other hand, is history-insensitive and does not 
worry about behavioral errors as long as eventual recovery is guaranteed.

Finally, security breach can lead to different kinds of failures. While many failures are 
caused due to dust, humidity, cobwebs on the printed circuit boards, or spilled coffee on 
the keyboard, a security loophole that allows a virus can force the system to shut down 
services or make the system behave in a bizarre way. However, so far, the fault-tolerance 
community and the security community have maintained separate identities with mini-
mal overlap between them.

12.8 BIBLIOGRAPHIC NOTES
Ezhilchelvan and Srivastava [ES86] presented a taxonomy of failures that closely resembles 
the taxonomy presented in this chapter. Rushby [R94] wrote an exhaustive and thoughtful 
article on faults and related terminologies. Gray’s article [G85a] examined many intricate 
aspects of why computers stop working, and discussed about Heisenbugs and Bohrbugs 
(unlike Heisenbugs, these are solid bugs that can be consistently reproduced during the 
testing phase). The general method of fault specification has been adapted from Arora and 
Gouda’s work [AG93]. TMR and n-modular redundancy have been in use from the days of 
World War II to current applications in aircraft control and website mirroring—the origi-
nal idea is due to von Neumann [VN56]. Lampson [LPS81] introduced stable storage for 
implementing atomic transactions. Sliding window protocols and their use in the design 
of TCP and other end-to-end protocols can be found in every textbook on networking—
see, for example, Peterson and Davie’s book [PD96]. The alternating bit protocol was first 
introduced as a mechanism of supporting full-duplex communication on half-duplex 
channels—the earliest work is due to Lynch [Ly68].

Herlihy and Wing [HW91] presented a formal specification of graceful degradation. The 
work on multitolerance is due to Arora and Kulkarni [AK98]. Dega [De96] reported how 
fault tolerance was built into the design of Ariane 5 rocket launcher. Unfortunately, despite 
such a design, the project failed. On June 4, 1996, only 40 s after the launch, the launcher 
veered off its path and exploded—which was later attributed to software failure. Gärtner 
[G99] wrote a survey on the design of fault-tolerant systems.
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EXERCISES
12.1 A sender P sends a sequence of messages to a receiver Q. In the absence of any fail-

ure, the communication from P to Q is FIFO—however, due to failure, the messages 
can reach Q out of order. Give a formal specification of this failure using normal and 
fault actions.

12.2 Buffer overflows (also known as pointer or heap or stack smashing) are a well-known 
source of program failure. What kind of fault models would capture their effects on 
the rest of the system?

12.3 Consider the following real-life failure scenarios and examine if these can be 
mapped to any of the known fault classes introduced in this chapter:

 a.  On January 15, 1990, 114 switching nodes of the long-distance system of AT&T 
went down. A bug in the failure recovery code of the switches was responsi-
ble for this. Ordinarily, when a node crashed, it sent out-of-service message to 
the neighboring nodes, prompting the neighbors to reroute traffic around it. 
However, the bug (a misplaced break statement in C code) caused the neighbor-
ing nodes to crash themselves upon receiving the out-of-service message. This 
further propagated the fault by sending an out-of-service message to nodes fur-
ther out in the network. The crash affected the service of an estimated 60,000 
people for 9 h, causing AT&T to lose $60 million revenue.

 b.  A program module of the Arianne space shuttle received a numerical value that 
it was not equipped to handle. The resulting variable overflow caused the shuttle’s 
onboard computer to fail. The rocket went out of control and subsequently crashed.

12.4 No fault-tolerant system can be implemented without some form of redundancy. 
The redundancy could be in spare hardware or extra space or extra time or extra 
messages used in the implementation. In this context, revisit the sliding window 
protocol and identify the redundancies.

12.5 Consider the following specification of a faulty process:
program what-fault
define : x: integer {initially x = 1}
do x = 0→x: = 1; send “hello” {S-actions}
[] x = 1→x: = 2   {S-action}
[] x = 2→x: = 0   {S-action}
[] x = 1→x: = 3   {F-action}
od

What kind of fault does the F-action induce?
12.6 The fault-tolerance community sometimes uses a term: repair fault. How will you jus-

tify repair as a failure so that it can trigger unexpected behavior? Present an example.
12.7 Failures are not always independent—the effect of one type of failure can sometimes 

be manifested as another kind of failure. Create two different scenarios to illustrate 
how temporal failures (i.e., a missed deadline) can lead to (1) crash failures and (2) 
omission failures.
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12.8 Explain how software errors can lead to (1) omission failure and (2) byzantine fail-
ure in a process. Provide examples to explain the complete scenario in each case.

12.9 A sender P sends a sequence of messages to a receiver Q. Each message m is tagged 
with a unique sequence number seq that increases monotonically, so the program 
for P can be specified as follows:

program sender
define seq : integer {message sequence number}
initially seq = 0
do true→send(m[seq],seq); seq: = seq + 1 od

The messages may reach Q out of order, but they are never lost. To accept messages in 
strictly increasing order of sequence numbers, Q uses a sequencer that resequences 
the message delivery:
a. Describe the program for the sequencer. Calculate its buffer requirement.
b. Now, assume that the sequencer has the ability to hold at most two messages in 

its buffer. Rewrite the programs of P and the sequencer, so that Q receives the 
messages in strictly increasing order of sequence numbers.

12.10 Communication links are generally reliable, and omission failures are gener-
ally rare. To conserve bandwidth, sometimes acks are replaced by nack (negative 
acknowledgment), where the receiver only sends a nack to inform the sender that 
it did not receive an expected message. If no nack is received, the sender is happy, 
assuming that the receiver has received its messages. Rewrite Stenning’s protocol 
using nack.

12.11 Consider a soda machine that dispenses a can of soda to a customer who deposits 
50 cents using some combination of quarters, dimes, and nickels. The program is 
as follows:

program soda machine
define credit : integer {initially credit = 0)
do quarter deposited → credit: = credit+25
[] dime deposited → credit: = credit+10
[] nickel deposited → credit: = credit+5
[] credit≥50 → dispense a can of soda; credit: = 0
od

a. The following fault action F ≡ credit = 45 → credit: = 0 triggered a malfunction 
of the soda machine. Describe the nature of the malfunction. What notice will 
you post on the machine to alert the customers until the problem is fixed?

b. Modify the program for the soda machine so that it tolerates the specific failure 
and customers are not affected at all.
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12.12 The alternating bit protocol described earlier is designed for a window size 1. This 
leads to a poor throughput. To improve the throughput, generalize the protocol to a 
window size w > 1 and calculate the lower bound of the size of the sequence number.

12.13 A system of n processes can mask up to m arbitrary failures using majority voting 
when n ≥ 2m + 1. Consider downgrading the tolerance from masking to fail-safe 
and assume that no output is safe. Can the system now tolerate the crash of a larger 
number of processes? Explain your answer.
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C h a p t e r  13

Distributed Consensus

13.1 INTRODUCTION
Consensus problems have widespread applications in distributed computing. Before intro-
ducing the formal definitions or discussing possible solutions, we first present a few moti-
vating examples of consensus, some of which have been visited in Chapters 7 and 13:

Example 13.1

A number of processes in a network decide to elect a leader. Each process begins with 
a bid for leadership. At the end, one of these processes is elected the leader, and it 
reflects the final decision of every process.

Example 13.2

Alice wants to transfer a sum of $1000 from her savings account in Las Vegas to a 
checking account in Iowa City. There are two components of this transaction: debit 
$1000 and credit $1000. Two distinct servers handle the two components. Regardless 
of failures, a transaction must be atomic—it will be a disaster if the debit operation is 
completed but the credit operation fails, or vice versa. Accordingly, two different serv-
ers have to reach an agreement about whether to commit or to abort the transaction.

Example 13.3

Five independent sensors measure the temperature T of a furnace. Each sensor 
checks if T is greater than 1000°C. Some sensors may be faulty, but it is not known 
which are faulty. The nonfaulty sensors have to agree about the truth of the predicate 
T > 1000°C (so that the next course of action can be decided).
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Example 13.4

Consider the problem of synchronizing a set of phase clocks that are ticking at the 
same rate in different geographical locations of a network. Viewed as a consensus 
problem, the initial values (of phases) are the set of local readings (which can be arbi-
trary), but the final phases must be identical.

Consensus problems are far less interesting in the absence of failures. This chapter studies 
distributed consensus in the presence of failures. The problem can be formulated as fol-
lows: a distributed system contains n processes {0, 1, 2, …, n−1}. Every process has an initial 
value in a mutually agreed domain. The problem is to devise an algorithm such that despite 
the occurrence of failures, processes eventually agree upon an irrevocable final decision 
value that satisfies the following three conditions:

Termination: Every nonfaulty process must eventually decide.

Agreement: The final decision of every nonfaulty process must be identical.

Validity: If every nonfaulty process begins with the same initial value v, then their final 
decision must be v.

The validity criterion adds a dose of sanity check—it is silly to reach agreement when the 
agreed value reflects nobody’s initial choice. Also, the irrevocability of the final decision 
is important: If a stock broker gets confirmation from his or her system that Alice bought 
50 shares of Wind Energy Inc. online, then even if the broker’s computer is destroyed by a 
tsunami, Alice should be able to go to any other broker and sell those shares.

All of the previous examples illustrate exact agreement. In some cases, approxi-
mate agreement is considered adequate. For example, physical clock synchroniza-
tion always allows the difference between two clock readings to be less than a small 
skew—exact agreement is not achievable. The agreement and validity criteria do not 
specify whether the final decision value has to be chosen by a majority vote—the lower 
threshold of acceptance is defined by the validity rule. Individual applications may 
fine-tune their agreement goals within the broad scopes of the three specifications. In 
Example 13.2, if the server in Iowa City decides to commit the action but the server in 
Las Vegas decides to abort since Alice’s account balance is less than $1000, then the 
consensus should be an abort instead of commit—this satisfies both termination and 
validity. Validity does not follow from agreement. Leaving validity out may lead to the 
awkward possibility that even if both servers prefer to abort the transaction, the final 
decision may be a commit.

In this chapter, we will address various problems related to reaching an agreement about 
a value or an action in a distributed system. We will separately discuss consensus in asyn-
chronous and synchronous systems.
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13.2 CONSENSUS IN ASYNCHRONOUS SYSTEMS
Seven members of a busy household decided to hire a cook, since they do not have time 
to prepare their own food. Each member of the household separately interviewed every 
applicant for the cook’s position. Depending on how it went, each member formed his 
or her independent opinion yes (means hire) or no (means don’t hire). These members 
will now have to communicate with one another to reach a uniform final decision about 
whether the applicant will be hired. The process will be repeated with each applicant, 
until someone is hired.

Consider an instance of this hiring process that deals with a single candidate. The mem-
bers may communicate their decisions in arbitrary ways. Since they do not meet each other 
very often, they may decide to communicate by phone, or through letters, or by posting a 
note on a common bulletin board in the house. The communication is completely asyn-
chronous, so actions by the individual members may take an arbitrary but finite amount 
of time to complete. Also, no specific assumption is made about how the final decision is 
reached, except that the final decision is irrevocable (so you cannot decide to hire the can-
didate and later say sorry). Is there a guarantee that the members will eventually reach a 
consensus about whether to hire the candidate?

If there is no failure, then reaching an agreement is trivial. Each member sends his or 
her initial opinion to every other member. Define V to be the bag of initial opinions by all 
the members of the household. Due to the absence of failure, every member is guaranteed 
to receive an identical bag V of opinions from all the members. To reach a common final 
decision, every member will apply the same choice function f on this bag of opinions.

Reaching consensus, however, becomes surprisingly difficult, when one or more mem-
bers fail to execute actions. Assume that at most, k members (k > 0) can undergo crash 
failure. An important result due to Fischer et al. [FLP85] states that in a fully asynchronous 
system, it is impossible to reach consensus even if k = 1.* The consensus requires agreement 
among nonfaulty members only—we do not care about the faulty members.

For an abstract formulation of this impossibility result, treat every member as a process. 
The network of processes is completely connected. Assume that the initial opinion or the 
final decision by a process is an element of the set {0, 1} where 0 ≡ don’t hire, 1 ≡ hire. We 
demonstrate the impossibility result for the shared-memory model only, where processes 
communicate with one another using read and write actions. The results hold for the 
message-passing model too, but we will skip the proof for that model.

13.2.1 Bivalent and Univalent States

The progress of a consensus algorithm can be abstracted using a binary decision state. 
The two possible decision states are bivalent and univalent. A decision state is bivalent if 
starting from that state, there exist at least two distinct executions leading to two distinct 

* Remember that crash failures cannot be reliably detected in asynchronous systems. It is not possible to distinguish 
between a processor that has crashed and a processor that is executing its actions very slowly.
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decision values 0 or 1. What it means is that from a bivalent state, there is a potential for 
reaching any one of the two possible decision values. A state from which only one decision 
value can be reached is called a univalent state. Univalent states can be either 0-valent or 
1-valent. In a 0-valent state, the system is committed to the irrevocable final decision 0. 
Similarly, in a 1-valent state, the system is committed to the irrevocable final decision 1.

As an illustration, consider a best-of-five-sets tennis match between two players A 
and B. If the score is 6-3, 6-4 in favor of A, then the decision state is bivalent, since any-
one could win. If, however, the score becomes 6-3, 6-4, 6-1 in favor of A, then the state 
becomes univalent, since even if the game continues till the fifth set, only A can win. At 
this point, the outcome of the remaining two sets becomes irrelevant. This trivially leads 
to the following lemma.

Lemma 13.1

No execution leads from a 0-valent to a 1-valent state or vice versa.

Lemma 13.2

Every consensus protocol must have a bivalent initial state.

Proof (by contradiction): An initial state consists of a vector of n binary values—each 
value is the initial choice of a process. Assume that no initial state is bivalent. Now, consider 
an array s[0 .. n − 1] of n carefully chosen initial states as shown in Table 13.1. Note that the 
vectors in the successive rows differ by one bit only. Per the validity criterion of consensus, 
s[0] is 0-valent, and s[n − 1] is 1-valent. In the above array, there must exist states s[n − i − 1] 
and s[n − i] such that (1) s[n − i − 1] is 0-valent, (2) s[n − i] is 1-valent, and (3) the vectors 
differ in the value chosen by some process i. Now consider a computation e (not involving 
process i—thus, e mimics the crash of i) that starts from s[n − i − 1] and leads to the final 
decision 0. The same computation e must also be a valid computation starting from s[n − i], 
which is 1-valent. This contradicts Lemma 13.1. Therefore, no consensus protocol should 
have a univalent initial state.

TABLE 13.1 Array of Possible Initial States for a System of n Processes

Process → 0 1 2 i i + 1 n − 3 n − 2 n − 1 Type 
s[0] 0 0 0 ⋯ 0 0 ⋯ 0 0 0 0-valent
s[1] 0 0 0 ⋯ 0 0 ⋯ 0 0 1 0-valent
s[2] 0 0 0 ⋯ 0 0 ⋯ 0 1 1 0-valent
s[3] 0 0 0 ⋯ 0 0 ⋯ 1 1 1 0-valent
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 0-valent
s[n − i − 1] 0 0 0 0 1 1 1 1 1 0-valent
s[n − i] 0 0 0 ⋯ 1 1 ⋯ 1 1 1 1-valent
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 1-valent
s[n − 1] 1 1 1 1 1 1 1 1 1 1 1-valent
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Lemma 13.3

In a consensus protocol, starting from any initial bivalent state I, there must exist a reach-
able bivalent state T, from where every action taken by some process p leads to either a 
0-valent or a 1-valent state.

Proof: If every state reachable from I is bivalent, then no decision is reached—this violates 
the termination criteria of the consensus protocol. In order that decisions are reached, 
every execution must eventually lead to some univalent state.

Assume that there is a bivalent state T reachable from I (Figure 13.1)—from T action 0 by 
process p leads to the 0-valent state T0, and action 1 by process q ≠ p leads to the 1-valent 
state T1. This implies that the guards of both p and q are enabled in state T. We will first 
argue that p and q cannot be distinct processes. Assume a shared-memory model* and 
consider three cases:

Case 1: At least one of the actions (action 0 or action 1) is a read action.
Without loss of generality, let action 0 by p be a read operation and action 1 by q be a write 
operation. The read action does not have any impact on any other process in the system, so 
the write action by process q in state T remains a feasible action in state T0 also. Consider 
now a computation e1 from state T (Figure 13.2a) where q executes action 1 followed by a 
suffix that excludes any step by process p (which mimics the crash of p). Such a computa-
tion must exist if consensus is possible when a process crashes. Let e1 lead to decision 1. 
Now, consider another computation e0 that starts with action 0 by p. To every process r ≠ p, 
the states T0 and T are indistinguishable. So one can use e1 as the suffix of the computa-
tion e0 from state T0 onwards. The final decision now is 0. To every process other than p, 
the two computations e0 and e1 are indistinguishable, but the final decisions are different. 
This is not possible. Therefore, p = q.

* Similar arguments can be made for the message-passing model also. See [FLP85] for details.
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FIGURE 13.1 The transition from bivalent to univalent states.
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Case 2: Both action 0 and action 1 are write operations, but on different variables.
In this case, the two writes are noninterfering, that is, no write by one process negates 
the effect of write by the other process. Now, consider two computations e0 and e1 from 
state T: In e0, p executes action 0, q executes action 1, and then the remaining actions lead 
to the final decision 0. In e1, the first two actions are swapped, that is, the first action is 
by q and the second action is by p, and the remaining actions lead to the final decision 1 
(see Figure 13.2b). However, in both cases, after the first two steps, the same global state is 
reached, so the final outcomes cannot be different! Therefore, p = q.

Case 3: Both action 0 and action 1 are write operations, but on the same variable.
If p, q execute actions 0 and 1 one after another, then the second action will overwrite the 
result of the first action. Consider two computations e0 and e1 from state T: In e1, q exe-
cutes action 1 followed by a suffix that excludes any step by process p (which mimics the crash 
of p), and it leads to decision 1. In e0, use e1 as the suffix of the computation after action 0 
(i.e., p writes). Observe that in e0, after q writes following p’s write, the state is the same as T1. 
To every process other than p, the two computations e0 and e1 are indistinguishable, but e0 
leads to a final decision 0, whereas e1 leads to decision 1. This is impossible. Therefore, p = q.

Process p is called a decider process for the bivalent state T.

Theorem 13.1

In asynchronous distributed systems, it is impossible to design a consensus protocol that 
will tolerate the crash failure of a single process.

Proof: Let T be a bivalent decision state reachable from the initial state and p be a decider 
process, such that action 0 by process p leads to the decision 0, and action 1 by process p leads 
to the decision 1. What if p crashes in state T, that is, beginning from state T, process p does not 
execute any further action? Due to actions taken by the remaining processes, the system can 
possibly move to another bivalent state U. Since the computation must terminate, that is, the 
system will eventually reach consensus, bivalent states cannot form a cycle. This implies there 
must exist a reachable bivalent state R, in which (1) no action leads to another bivalent state, 
and (2) each enabled process r is a decider. If r crashes, then no consensus is reached.
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FIGURE 13.2 The different scenarios of Lemma 13.3. (a) p reads and q writes. (b) Both p and q 
write, but on different variables.
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This explains why the family members may never reach a consensus about hiring a cook as 
long as one of them postpones his or her decision indefinitely or does not respond (equiva-
lent to a crash). For a more rigorous proof of this result, see [Ly96]. Note that the impos-
sibility result holds only for deterministic solutions—there are probabilistic solutions for 
reaching consensus in the presence of crash failures [B83].

13.3  CONSENSUS IN SYNCHRONOUS SYSTEMS: 
BYZANTINE GENERALS PROBLEM

The byzantine generals problem deals with reaching consensus in the presence of byzantine 
failures. Byzantine failure model (Chapter 12) captures any arbitrary form of erratic behav-
ior: a faulty process may send arbitrary messages, or undergo arbitrary state transitions 
not consistent with its specification, or decide not to execute any action. Even malicious 
behavior is not ruled out. A solution to the consensus problem in the presence of byzantine 
failures should be applicable to systems where no guarantees about process behaviors are 
available. Purely asynchronous models are so weak that it is impossible to solve the con-
sensus problem even for simple failures like crash. In Lamport et al. [LSP82], a solution 
for synchronous distributed systems using the message-passing model was proposed. This 
section presents the solution in [LSP82]. The story line is as follows:

In a particular phase of a war, n generals 0, 1, 2, …, n − 1 try to reach an agreement about 
whether to attack or to retreat. Each general may have his own preference about whether to 
attack or to retreat. However, a sensible goal in warfare is that all generals agree upon the 
same plan of action. The generals will do so by exchanging their individual preferences. 
However, some of these generals may be traitors—their goal is to prevent the loyal generals 
from reaching an agreement. For this, a traitor may indefinitely postpone their partici-
pation or send conflicting messages. No one knows who the traitors are. The problem is 
to devise a strategy, by which every loyal general eventually agrees upon the same plan, 
regardless of the action of the traitors.

We assume that the system is synchronous: computation speeds have a known lower 
bound and channel delays have a known upper bound so that the absence of messages can 
be detected using timeout.

13.3.1 Solution with No Traitor

In the absence of any traitor, every general sends his input (attack or retreat) to every 
other general. We will refer to these inputs as orders. These inputs need not be the same. 
The principle of reaching agreement is that every loyal general eventually collects the 
identical bag S of orders and applies the same choice function on S to decide the final 
strategy.

13.3.2 Solution with Traitors: Interactive Consistency Criteria

The task of collecting S can be divided into a number of subtasks. Each subtask consists of 
a particular general i broadcasting his order to every other general. Each general plays the 
role of the commander when he broadcasts and the role of a lieutenant when he receives an 
order from another general (playing the role of the commander).
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Some generals can be traitors. When a loyal commander broadcasts his order to the 
lieutenants, every loyal lieutenant receives the same order. This may not be true when 
the commander is a traitor, since he can say attack to some lieutenants and retreat to the 
others. The precise requirements of the communication between a commander and his 
lieutenants are defined by the following two interactive consistency criteria:

IC1: Every loyal lieutenant receives the same order from the commander.

IC2: If the commander is loyal, then every loyal lieutenant receives the order that the 
commander sends.

Regardless of whether the commander is a traitor, IC1 can be satisfied as long as every 
loyal lieutenant receives the same order. However, it does not preclude the awkward case 
in which the commander sends the order attack, but all lieutenants receive the order 
retreat, which satisfies IC1! This justifies the inclusion of IC2. When the commander is 
loyal, IC2 holds, and IC1 follows from IC2.

Satisfying the interactive consistency criteria while collecting the order from a com-
mander who is a potential traitor can be complex. This is illustrated in the subsequent 
sections.

13.3.3 Consensus with Oral Messages

The solution to the byzantine generals problem depends on the model of message commu-
nication. The oral message model satisfies the following three conditions:

 1. Messages are not corrupted in transit.

 2. Messages can be lost, but the absence of message can be detected.

 3. When a message is received (or its absence is detected), the receiver knows the iden-
tity of the sender (or the defaulter).

The corruption of a message can be attributed to the sender sending a different order—
a behavior that is well captured under the byzantine failure model, so allowing the messages 
to be corrupted in transit does not add any more value to the fault model. Let m represent 
the number of traitors. An algorithm that satisfies IC1 and IC2 using the oral message 
model of communication in the presence of at most m traitors will be called an OM(m) 
algorithm. The OM(0) algorithm is based on direct communication only: The commander 
sends his order to every lieutenant, and the lieutenants receive these orders that are sent.

However when m > 0, direct communication is not adequate. To check for possible 
inconsistencies, a loyal (and wise) lieutenant would also like to know from every other 
lieutenant, “What did the commander tell you?” The answers to these questions constitute 
the indirect messages. Note that not only the commander but also some of the fellow lieu-
tenants may be traitors. The actual order accepted by a lieutenant from the commander 
will depend on both direct and indirect messages.
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13.3.3.1 Impossibility Result
An important impossibility result is that, using oral messages, no solution to the byzantine 
generals problem exists with three or fewer generals and one traitor.

The two-general case is clearly not interesting—if there is a traitor, then the loyal general 
does not have to agree with anyone, and the problem becomes vacuous. To motivate the 
readers, consider an example with three generals and one traitor. Figure 13.3a shows the 
case when the commander is loyal, but lieutenant 2 is a traitor. We use the values 0 and 1 
in place of attack and retreat, respectively. For lieutenant 1, the direct message from the 
commander is 1, and the indirect message received through lieutenant 2 (who altered the 
message) is 0. To satisfy IC2, lieutenant 1 must choose the first element from the ordered 
set (direct message, indirect message) as the order from the commander.

Now consider the scenario of Figure 13.3b, where the commander is a traitor. If the 
lieutenants use the same choice function as in the previous case, then IC1 is violated. 
Since no loyal lieutenant has a prior knowledge about who is faulty, there will always exist 
a case in which either IC1 or IC2 will be violated. These form the seeds of the impossi-
bility result. A more formal proof of this impossibility result (adapted from [FLM86]) is 
presented in the following.

Theorem 13.2

Using oral messages, there is no solution to the byzantine generals problem when there are 
three generals and one traitor.

Proof (by contradiction): Assume that there exists a solution to the byzantine generals 
problem for a system S consisting of the generals P, Q, R (Figure 13.4a), of which one is 
a traitor. In Figure 13.4b, define another system SS that consists of two copies of each 
general—P′,Q′,R′ are clones of P, Q, R, respectively. Note that based on the local knowledge 
about his own neighborhood, no general can distinguish whether it belongs to S or SS. We 
call them look-alike systems.

Assume that in SS, each process is nonfaulty. Also, each of the generals P,Q,R′ has an ini-
tial value x, and each of the other generals P′,Q′,R has a different initial value y (i.e., x ≠ y). 
System SS can mimic at least three separate instances of a three-general system in which one 
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FIGURE 13.3 (a) Commander is loyal. (b) Commander is a traitor.
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can be a potential traitor: for example, R and R′ present to P, Q with two different versions 
of their values (orders), Q and Q′ do the same to R, P′, and so on.

To P and Q in SS, it will appear that they are a part of a three-general system like S in 
which R is faulty. Since both P and Q have initial values x, their final decision must also be x. 
To P′ and R in SS, it will appear that they are a part of a three-general system like S in 
which Q is faulty. Since both P′ and R have initial values y, their final orders must also be y.

Now, to Q and R in SS, it will appear that they are a part of a three-general system like 
S in which P is faulty. But they cannot reach consensus, since Q has already chosen x, and 
R has already chosen y as their final decision. Therefore, a three-general system with one 
traitor cannot reach consensus.

Corollary 13.1

Using oral messages, no solution to the byzantine generals problem exists with 3m or fewer 
generals and m traitors (m > 0).

Proof (contradiction): Assume that the statement is false, that is, a solution to the byzantine 
generals problem exists with 3m or fewer generals and m traitors. Then we can use it to con-
struct a solution to the case of three generals and one traitor in the following way: Divide the 3m 
generals into three groups of m generals each, such that all the traitors are put in one group. Let 
a general simulate the members of each of these groups. The general that simulates the group of 
m traitors mimics the actions of a single traitor, whereas the other two mimic the loyal generals.

Since we know that it is impossible to construct a solution with three generals and one 
traitor, we have a contradiction.

13.3.3.2 OM(m) Algorithm
It follows from Corollary 13.1 that in order to reach a consensus in the presence of m trai-
tors, n ≥ 3m+1 generals are needed. Recall that OM(m) refers to an algorithm that satisfies 
the interactive consistency criteria IC1 and IC2 in the presence of at most m traitors. In 
Lamport et al. [LSP82], proposed the following version of OM(m). The algorithm is recur-
sive: OM(m) invokes OM(m − 1), which invokes OM(m − 2) and so on.
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FIGURE 13.4 (a) and (b) Two look-alike systems.
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Algorithm OM(0)

 1. Commander i sends out a value v ∈ {0, 1} to every lieutenant j ≠ i.
 2. Each lieutenant j accepts the value from i as the order from commander i.

Algorithm OM(m)

 1. Commander i sends out a value v ∈ {0, 1} to every lieutenant j ≠ i.
 2. If m > 0, then each lieutenant j, after receiving a value from the commander, starts a 

new phase by broadcasting it to the remaining lieutenants using OM(m − 1). In this 
phase, j acts as the commander. Each lieutenant thus receives (n − 1) values: (a) a 
value directly received from the commander i of OM(m) and (b) (n − 2) values indi-
rectly received from the (n − 2) lieutenants resulting from their broadcast OM(m − 1). 
If a value is not received, then it is substituted by a default value.

 3. Each lieutenant chooses the majority of the (n − 1) values received by it as the order 
from the commander i.

Figure 13.5 illustrates the OM(1) algorithm with four generals and one traitor. The com-
mander’s id is 0. In part (a), lieutenant 3 is a traitor, so he broadcasts a 0 even if he has 
received a 1 from the commander. Per the algorithm, each of the loyal lieutenants 1 and 2 
chooses the majority of {1, 1, 0}, that is, 1. In part (b), commander 0 is a traitor and broad-
casts conflicting messages. However, all three loyal lieutenants eventually decide on the 
same final value, which is the majority of {1, 0, 1}, that is, 1.

The algorithm progresses in rounds. Algorithm OM(0) requires one round, and OM(m) 
requires m + 1 rounds to complete. As the recursion unfolds, OM(m) invokes n − 1 separate 
executions of OM(m − 1), each OM(m − 1) invokes n − 2 separate executions of OM(m − 2), 
and so on. This continues until OM(0) is reached. The total number of messages required in 
the OM(m) algorithm is therefore (n−1)(n−2)(n−3)⋯(n−m+1), that is, O(nm).

Figure 13.6 illustrates the execution of the OM(m) algorithm with m = 2 and n = 7. Each 
level of recursion is explicitly identified. Commander 0 initiates OM(2) by sending a 1 to 
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FIGURE 13.5 An illustration of OM(1) with four generals and one traitor: the messages at the upper 
level reflect the opening messages of OM(1), and those at the lower level reflect the OM(0) messages that 
are triggered by the upper level messages. (a) Lieutenant 3 is the traitor. (b) Commander 0 is the traitor.
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every lieutenant. The lieutenants 1 and 3 are traitors. The diagram does not show values 
of the messages from the traitors, but you can assume any arbitrary value for them. Loyal 
commanders 2, 4, 5, 6 receive the direct message 1 and initiate OM(1). Each OM(1) triggers 
an instance of OM(0), and the unfolding of the recursion ends.

At the OM(1) level, let us focus on 5. What message did 5 receive from 2 via OM(1)? 
Lieutenant 5 is eligible to receive five messages at this level: a direct message 1 from 2 and 
four other messages from 4, 6, 1, and 3. Nothing can be said about what 5 would receive 
from 1 or 3, since they are traitors. But as Figure 13.6 shows, 5 received a 1 from each of 4 
and 6. So 5 received three 1s out of the five values that it can receive, and the majority is 1. 
Use similar arguments and observe that 5 received a 1 from 4 and 6 too via OM(1). At the 
OM(2) level, each lieutenant collects at least four 1s out of the maximum six values that it 
can receive, and the majority is 1. This reflects the order from commander 0. Any misinfor-
mation sent by the traitors is clearly voted out, and the final results satisfy the interactive 
consistency criteria IC1 and IC2.

In case the decision value is not binary, the function majority may be replaced by the 
function median to reach agreement.

Proof of the oral message algorithm

Lemma 13.4

Let the commander be loyal, and n > 2m + k, where m = maximum number of traitors. 
Then OM(k) satisfies IC2.

Proof (by induction):

Basis: When k = 0, the theorem is trivially true.
Induction hypothesis: Assume that the theorem holds for k = r (r > 0), that is, OM(r) 

satisfies IC2. We need to show that it holds for k = r + 1.
Inductive step: Consider an OM(r + 1) algorithm initiated by a loyal commander. Here, 

n > 2m + r + 1 (from the statement of the theorem), so n − 1 > 2m + r (Figure 13.7).
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FIGURE 13.6 A partial trace of the OM(2) algorithm with seven generals and two traitors: The 
messages received by the traitors at the lowest level are not shown, since they do not matter.
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After the commander sends out a value, each of the remaining (n − 1) lieutenants initiates 
OM(r). According to the induction hypothesis, OM(r) satisfies IC2—so every loyal lieuten-
ant receives the same order via OM(r) from every other loyal lieutenant. Now n − 1 > 
2m + r, which implies n − m − 1 > m + r > m. This shows that a majority of the lieutenants 
are loyal. So, regardless of the values sent by the m traitors, the majority of the (n − 1) values 
collected by each lieutenant, including the direct message from the loyal commander, must 
be v. So, IC2 is satisfied.

Theorem 13.3

If >3m where m is the maximum number of traitors, then OM(m) satisfies both IC1 and IC2.

Proof (by induction):

Basis: When m = 0, the theorem trivially holds.
Induction hypothesis: Assume that the theorem holds for m = r. We need to show it holds 

for OM(r + 1) too.
Inductive step: Substitute k = m in Lemma 13.4 and consider the following two cases:

Case 1: The commander is loyal. Then OM(m) satisfies IC2 and hence IC1.
Case 2: The commander is a traitor. Then there are more than 3(r + 1) generals and 

at most (r + 1) traitors. This implies that there are more than (3r + 2) lieutenants 
remaining, of which at most r are traitors, and more than (2r + 2) are loyal. Since 
(3r + 2) > 3r, by the induction hypothesis, OM(r) satisfies IC1 and IC2.

In OM(r + 1), a loyal lieutenant chooses the majority from (1) the values from more than 
(2r + 1) loyal lieutenants obtained via OM(r), (2) the values received from at most r traitors 
via OM(r), and (3) the value sent by the commander, who is a traitor. Since OM(r) satisfies 
IC1 and IC2, the values collected in part (1) are the same for all loyal lieutenants—it is 
the same value that the lieutenants received from the commander. Also, by the induction 
hypothesis, the loyal lieutenants will receive the same value via OM(r) from each of the 
r traitors, regardless of what they send. So every loyal lieutenant will collect the same set 
of values, apply the same choice function, and reach the same final decision. 

m traitorsn – m – 1 loyal lieutenants

Loyal commander

FIGURE 13.7 The OM(r + 1) algorithm with n generals and m traitors.
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13.3.4 Consensus Using Signed Messages

The communication model of signed message satisfies all the conditions of the model of 
oral message. In addition, it satisfies two extra conditions:

 1. A loyal general’s signature cannot be forged, that is, any forgery can be detected.

 2. Anyone can verify the authenticity of a signature.

In real life, signature is an encryption technique. Authentication methods to detect pos-
sible forgery are discussed in Chapter 19. The existence of a safeguard against the forgery 
of signed messages can be leveraged to find out simpler solutions to the consensus problem. 
So if the commander sends a 0 to every lieutenant {0, 1, 2, …, n − 1}, but lieutenant 2 tells 
lieutenant 1: “the commander sent me a 1,” then lieutenant 1 can immediately detect it and 
discard the message. The signed message algorithm also exhibits better resilience to faulty 
behaviors.

We begin with an example to illustrate interactive consistency with three generals and 
one traitor using signed messages. The notation v{S} will represent a signed message, where 
v is a value initiated by general i and S is a signature list consisting of the sequence of sig-
natures by the generals i, j, k, …. Each signature is essentially an encryption mechanism 
using the sender’s private key. Loyal generals try to decrypt or decipher it using a public 
key. If that is not possible, then the message must be forged and is discarded. The number 
of entries in S will be called the length of S.

In Figure 13.8a, lieutenant 1 will detect that lieutenant 2 forged the message from the 
commander, and reject the message. In Figure 13.8b, the commander is a traitor, but no 
message is forged. Both 1 and 2 will discover that the commander sent out inconsistent 
values. To reach an agreement, both of them will apply some mutually agreed choice func-
tion f on the collected bag of messages and make the same final decision. Note that this 
satisfies both IC1 and IC2.
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0{0,2}

1{0,1}
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FIGURE 13.8 Interactive consistency using signed messages. (a) Lieutenant 1 detects that the 
message from 2 is forged, (b) both 1 and 2 accept all messages since no lieutenant forged any 
message.
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In contrast with the OM(m) algorithm, the signed message version SM(m) satisfies both 
IC1 and IC2 whenever n ≥ m + 2, so it has a much better resilience against faulty behavior. 
The algorithm SM(m) is described in the following:

Algorithm SM(m)

 1. Commander i sends out a signed message v{i} to every lieutenant j ≠ i.
 2. Lieutenant j, after receiving a message v{S}, adds it to a set V  ·  j, only if
 (i) It is not forged
 (ii) It has not been received before
 3. If the length of S is less than m + 1, then lieutenant j
 (i) Appends his own signature to S
 (ii) Sends V · j it to every other lieutenant whose signature does not appear in S
 4. When lieutenant j receives no more messages, he applies a choice function on V · j to 

generate the final decision.

The only requirements on the choice function are (1) when V · j contains a single element 
v, choice(V · i) = v, (2) when V · i = Ø, choice(V · i) = 0 and (3) when |V · i| > 1, the median 
element is returned, assuming that the elements are ordered. 

Theorem 13.4

If n ≥ m + 2, where m is the maximum number of traitors, then SM(m) satisfies both IC1 
and IC2.

Proof: Consider the following two cases:

Case 1: Assume that the commander is loyal. Then every loyal lieutenant i must receive 
the value v from the initial broadcast. Since forged messages are discarded, any other 
value indirectly received and accepted by a loyal lieutenant must be v. Since the only 
message in the set V · i is v, choice(V · i) = v. This satisfies both IC1 and IC2.

Case 2: Assume that the commander is a traitor. We argue that for a pair of loyal lieu-
tenants i and j, V · i = V · j. If length(S) < m + 1, then i sends to j every message that he 
accepts, and vice versa. If length(S) = m + 1, then at least one loyal lieutenant must 
have signed the message and sent it to i and j, so it appears in both V · i and V · i. 
Therefore, V · i = V · j. Application of the choice function on the sets V · i and V · j will 
lead to the same final decision by both i and j. This satisfies IC1. 

SM(m) begins by sending up to (n − 1) messages, each recipient of this message sends up 
to (n − 2) messages and so on. So, to reach an agreement, it will cost (n − 1)(n − 2) ⋯ 
(n − m + 1) messages. The message complexity is thus similar to that of OM(m). However, 
for the same value of n, the signed message algorithm has much better resilience, that is, it 
tolerates a much larger number of traitors.
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13.4 PAXOS ALGORITHM
Paxos is an algorithm for implementing fault-tolerant consensus. It runs on a completely 
connected network of n processes and tolerates up to m failures, where n ≥ 2m + 1. Processes 
can crash and messages may be lost, but byzantine failures are ruled out, at least in the cur-
rent version. The algorithm solves the consensus problem in the presence of these faults on 
an asynchronous system of processes. Although the requirements for consensus are agree-
ment, validity, and termination, Paxos primarily guarantees agreement and validity, and 
not termination—it allows for the possibility of termination only if there is a sufficiently 
long interval during which no process restarts the protocol.

A process may play three different roles: proposer, acceptor, and learner. Each role has a 
different responsibility: Proposers submit proposed values on behalf of clients, acceptors 
decide the candidate values for the final decision, and learners collect these information 
from the acceptors and report the final decision back to the clients. A proposal sent by a 
proposer is a pair (v, n) where v is a value and n is a sequence number. If there is only one 
acceptor that decides which value will be chosen as the consensus value, then it will be too 
simplistic. What if the acceptor crashes? To deal with this, there are multiple acceptors. 
A proposal must be endorsed by at least one acceptor before it becomes a candidate for the 
final decision. The sequence number is used to distinguish between successive attempts 
to invoke the protocol. Upon receiving a proposal with a larger sequence number from a 
given process, acceptors discard the proposals with lower sequence numbers. Eventually, 
an acceptor accepts the majority’s choice. The sequence of actions is as follows:

Phase 1: The preparatory phase

Step 1.1: Each proposer sends a proposal (v, n) to each acceptor (Figure 13.9).

Step 1.2: If n is the largest sequence number of a proposal received by an acceptor, then it sends 
an ack(n, ⊥, ⊥) to its proposer, which is a promise that it will ignore all proposals numbered 
lowered than n. However, in case an acceptor has accepted a proposal with a sequence 
number n′ < n and a proposed value v, it responds with ack(n, v, n′). This implies that the 
proposer has no point in trying to submit another proposal with a larger sequence number. 

Client

Proposer

Learner

Acceptor

Acceptor

Acceptor

FIGURE 13.9 The setup in Paxos: each circle is a process that can act as any one of the three agents: 
proposer, acceptor, or learner.
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An alternative is to respond to the proposer with a negative acknowledgment (nack) that 
discourages the proposer to force an agreement with new input values. Note that this is a 
performance issue and does not affect the correctness of the protocol. When there are two 
proposals with identical sequence numbers, the tie is broken using the process ids.

Phase 2: Request for acceptance of an input value

Step 2.1: If a proposer receives ack(n, ⊥, ⊥) from a majority of acceptors, then it sends 
accept(v, n) to all acceptors, asking them to accept this value. If however, an accep-
tor returned an ack(n, v, n′) to the proposer in phase 1 (which means that it already 
accepted proposal with value v) then the proposer must include the value v with the 
highest sequence number in its request to the acceptors.

Step 2.2: An acceptor accepts a proposal (v, n) unless it has already promised to consider 
proposals with a sequence number greater than n.

Phase 3: The final decision
When a majority of the acceptors accept a proposed value, it becomes the final decision 
value. The acceptors multicast the accepted value to the learners, which enables them to 
determine if a proposal has been accepted by a majority of acceptors. The learners convey 
it to the client processes invoking the consensus.

The following two observations highlight the properties of the algorithm:

Observation 1: An acceptor accepts a proposal with a sequence number n if it has not 
sent a promise to any proposal with a sequence number n′ > n.

Observation 2: If a proposer sends an accept(v, n) message in phase 2, then either no 
acceptor in a majority has accepted a proposal with a sequence number n′ < n, or 
v is the value in the highest numbered proposal among all accepted proposals with 
sequence numbers n′ < n accepted by at least one acceptor in a majority.

13.4.1 Safety Properties

The two important safety properties are as follows:

Validity: Only a proposed value can be chosen as the final decision.

Agreement: Two different processes cannot make different decisions.

The validity part is obvious, so let us argue that the agreement property will hold. By defi-
nition, a decision value is endorsed by a majority of acceptors. Since the intersection of two 
majorities is nonempty, and any acceptor will accept only one value in one instance of the 
protocol, the final decision is unique.

Note that no process learns that a value has been decided unless it actually has been 
decided. For this, a learner has to find out that a proposal has been accepted by a majority 
of acceptors. Acceptors can communicate directly to the learners or communicate through 
some distinguished learner—the latter approach will reduce the message complexity, but 
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can fall apart when the distinguished learner fails. Since messages can be lost, a value can 
be chosen without any learner finding out about it. The failure of one or more acceptors 
can make it impossible for a learner to find out whether a value received the endorsement 
of the majority, even if it did so. After a while, the proposer will restart the protocol with a 
higher sequence number, until a decision is reached.

13.4.2 Liveness Properties

It is possible for multiple proposers to submit proposals with increasing values of sequence 
numbers in such a manner that none of those are ever accepted. Consider the following 
sequence of events:

• (Phase 1) Proposer 1 sends out prepare(n1).

• (Phase 1) Proposer 2 sends out prepare(n2) where n2 > n1.

• (Phase 2) Proposer 1’s accept(n1) is declined, since the acceptor has already prom-
ised to proposer 2 that it will not accept any proposal numbered lower than n2 so 
proposer 1 restarts phase 1 with a higher number n3 > n2.

• (Phase 2) Proposer 2’s accept request is now declined on a similar ground.

The race can go on forever, stalling progress. One way out is to elect a single proposer 
and entrust it with the responsibility of sending proposals on behalf of clients. However, 
leader election itself is a consensus problem that may not be solvable in an asynchronous 
setting using deterministic algorithms. To elect a leader, either a randomized algorithm or 
a timeout-based solution should be adopted. Multiple proposers can however be present 
when one crashes at the middle of a negotiation, leading another proposer to take over. 
A sample trace is illustrated in the following:

• (Phase 1) Proposer sends prepare(n1) to acceptors 1, 2, 3.

• (Phase 1) Acceptors respond with the promise of not accepting a proposal with a 
sequence number less than n1.

• (Phase 2) Proposer receives the promise, sends accept(n1), and then becomes 
nonresponsive.

At this time, a new proposer will be elected who will take over the unfinished task from 
proposer 1. But the old proposer may not have crashed; it was perhaps executing its actions 
slowly. One method of terminating a race among multiple proposers is to use the idea of 
exponential backoff as in the Ethernet—a proposer receiving a nack will randomly choose 
a large delay before starting the next round. With probability 1, this will create a large-
enough time gap between the two proposers caught in a race, and one will soon get done 
without interference.
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13.5 FAILURE DETECTORS
The design of fault-tolerant systems will be simple if faulty processes can be reliably 
detected. Here are three scenarios highlighting the importance of failure detection:

Scenario 1: In a sensor network, a base station delegates the task of monitoring an envi-
ronment to a set of geographically dispersed sensor nodes. These sensors send the 
monitored values back to the base station. If a sensor node crashes, and the crash is 
reliably detected, then its task can be assigned to another sensor.

Scenario 2: In group-oriented activities, sometimes a task is divided among the mem-
bers of a group. If a member crashes, or a member voluntarily leaves the group, then 
the other members can take over the task of the failed member only if they can detect 
the failure.

Scenario 3: Distributed consensus, which is at the heart of numerous coordination prob-
lems, has trivially simple solution if there is a reliable failure detection service. In the 
byzantine generals problem, if the traitors could be reliably identified, then consen-
sus could be reached by ignoring the inputs from the traitors.

We focus on the detection of crash failures only. In synchronous distributed systems where 
message delays have upper bounds and processor speeds have lower bounds, timeouts are 
used to detect faulty processes. In purely asynchronous systems, we cannot distinguish 
between a process that has crashed and one that is running very slowly. Consequently, the 
detection of crash failures in asynchronous systems poses an intriguing challenge.

A failure detector is a service that generates a list of processes that are suspected to have 
failed. Each process has a local detector that coordinates with its counterparts in other pro-
cesses to provide the failure detection service. For asynchronous systems, the individual 
detection mechanisms are unreliable and error prone. Processes are suspected based on 
local observations or indirect information, and different processes may have different list 
of suspects. One way to compile a suspect list is to send a probe to all other processes with 
a request to respond. If a process does not respond within a specified period, then it is sus-
pected to have crashed. The list of suspects is influenced by how long a process waits for the 
response, and the failure scenario. If the waiting time is too short, then every process might 
appear to be a suspect. Again, if a process i receives two probes from j and k, responds to j, 
and then crashes—then j will treat i to be a correct process, but k will suspect i as a crashed 
process. Even the detector itself might be a suspect. The study of failure detectors examines 
how such unreliable failure detectors may coordinate with one another in the design of 
fault-tolerant systems.

To relate the list of suspects with processes that have actually crashed, we begin with 
two basic properties of a failure detector:

Completeness: Every crashed process is suspected.

Accuracy: No correct process is suspected.
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Completeness alone is of little use, since a detector that suspects every process is trivially 
complete. Similarly, accuracy alone is of little use, since a detector that does not suspect 
any process is trivially accurate. It is a combination of both properties that makes a failure 
detector meaningful, even if it is unreliable.

Note that completeness is a liveness property. Correct processes may not be able to sus-
pect the crashed process immediately after the crash occurs—it is ok if it is recognized 
after a finite period of time. Accuracy, on the other hand, is a safety property. Two extreme 
forms of completeness are as follows:

Strong completeness: Every crashed process is eventually suspected by every correct pro-
cess and remains a suspect thereafter.

Weak completeness: Every crashed process is eventually suspected by at least one correct 
process and remains a suspect thereafter.

The above definitions are completely independent of the actual mechanism for construct-
ing the suspect list, although readers may find it helpful to visualize heartbeat messages 
and timeout as tools. Based on the communication history over a period of time, each pro-
cess draws such a list. Later, if a process receives a message from a member of its suspect 
list, or learns from another process that the suspect has not crashed, then it will remove 
that member from the suspect list. There is a straightforward implementation of strong 
completeness using weak completeness:

program strong completeness (program for process i};
define D: set of process ids (representing the set of suspects);
initially D is generated by the weakly complete detector;
do true →
 send D(i)) to every process j ≠ i;
 receive D(i) from every process j ≠ i;
 D(i) : = D(i) ∪ D(j);
 if j ∈ D(i) →D(i):=D(i)\{j} fi {sender of a message is not a
  suspect}
od

The rationale behind the implementation is that, since every crashed process is suspected 
by at least one correct process, at the end, every D(i) of every correct process will contain 
all the suspects. Henceforth, we will only consider the strong completeness property.

Like completeness, one can define two forms of accuracy:

Strong accuracy: No correct process is ever suspected.

Weak accuracy: There is at least one correct process that is never suspected.

Both versions of accuracy can be further weakened using the attribute eventually. A fail-
ure detector is eventually strongly accurate if there exists a time T after which no correct 
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process is suspected. Before that time, a correct process may be added to and removed 
from the list of suspects any number of times. Similarly, a failure detector is eventually 
weakly accurate if there exists a time T after which at least one correct process is no more 
suspected, although before that time, every correct process could be a suspect. We will use 
the symbol ◊ (borrowed from temporal logic) to represent the attribute eventually.

By combining the strong completeness property with the four types of accuracy, we can 
define the following four classes of fault detectors:

Perfect P: (Strongly) Complete and strongly accurate

Strong S: (Strongly) Complete and weakly accurate

Eventually perfect ◊P: (Strongly) Complete and eventually strongly accurate

Eventually strong ◊S: (Strongly) Complete and eventually weakly accurate

Admittedly, other classes of failure detectors can also be defined. One class of failure detec-
tor that combines the weak completeness and weak accuracy properties has received sub-
stantial attention. It is known as the weak (W) failure detector. The weakest detector in this 
hierarchy is the eventually weak failure detector ◊W.

Chandra and Toueg introduced failure detectors to tackle the impossibility of consensus in 
asynchronous distributed systems [FLP85]. Accordingly, the issues to examine are as follows:

 1. Given a failure detector of a certain type, how can we solve the consensus problem?

 2. How can we implement these classes of failure detectors in asynchronous distributed 
systems?

13.5.1 Solving Consensus Using Failure Detectors

Any implementation of a failure detector, even an unreliable one, uses timeout in a direct or 
indirect way. Synchronous systems with bounded message delays and processor speeds can 
reliably implement a perfect failure detector using timeout. Given a perfect failure detector 
(P), we can easily solve the consensus problem in both synchronous and asynchronous dis-
tributed systems. However, on an asynchronous model, we cannot implement P—its prop-
erties are too strong. This motivates us to look for weaker classes of failure detectors that 
can solve asynchronous consensus. For such weak classes, we hope to find an approximate 
implementation—and the weaker the class, the narrower is the gap between the constraints 
they satisfy, and what a real implementation can offer (although such approximations have 
not been quantified). The interesting observation is that we know the end result—no failure 
detector that can be implemented will solve asynchronous consensus, because that would 
violate the FLP impossibility result. The intellectually stimulating question is the quest for 
the weakest class of failure detectors that can solve consensus. A related issue is to explore 
the implementation of some of the stronger classes of failure detectors using weaker classes.

In this section, we present two different solutions to the consensus problem, each using 
a different type of failure detector.
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13.5.1.1 Consensus Using P
A perfect failure detector lets each correct process receive inputs from every other correct 
process. Assume that up to t out of the n processes can crash. The underlying mechanism 
behind reaching consensus is reliable multicast. For every process p, let Vp be a vector of size n, 
the ith component of which represents the input from process i. If each process multicasts its 
input value to others, then everyone will receive an identical set of values, apply a choice func-
tion, and reach a consensus. But each multicast is a sequence of unicasts, and the sender may 
crash at the middle, which complicates matters. Reliable multicast overcomes this, and imple-
ments atomicity of the multicast by continuing the multicast for (t + 1) asynchronous rounds 
(Figure 13.10), after which the Vp of each correct process p becomes identical, and contains the 
inputs from all processes whose multicasts reached some correct process at least once.

The algorithm runs in two phases. The computation progresses in rounds. The rounds are 
asynchronous, and each process p keeps track of its own round number rp. In each round of 
phase 1, every process p exchanges its Vp with other processes. If p receives no message from 
q ≠ p, and no other process reports to p about receiving a message from q, then p sets Vp[q] 
to ⊥ (undefined input). The algorithm guarantees that at the end of phase 1, ∀p, q: Vp = Vq. 
Phase 2 generates the final decision value for each process. The steps are outlined as follows:

program Consensus with P {program for process p}
define Vp, Dp: array [0..n − 1] of input values
initially Vp=(⊥,⊥,⊥,…,⊥)
Vp[p]:=input of p;Dp:=Vp;rp:=1
(Phase 1)
 do rp<t+1→
  send (rp,Dp,p) to each q ≠ p;
  wait for (rp,Dp,q) from all each q ≠ p;{or q becomes a
  suspect}

2

3

4

5
(1, D4,4 )

(2, D5,5)

(1, D0,0)

1

0

FIGURE 13.10 A scenario with n = 6 and t = 2 showing a fraction of the communications: 
Process 4 sends data to 5 in round 1 and then crashes. Process 5 sends data in round 2 to 0 and 1 
and then crashes. In spite of the crashes, processes 0–3 receive the input values of 4 and 5.
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  for k = 0 to n − 1
  if Vp[k]=⊥ ∧ ∃ (rq,Dq,q):Dq[k]≠⊥ →
 Vp[k]:=Dq[k]; Dp[k]:=Dq[k]
  fi
  rp:=rp + 1
 od
{Phase 2} Final decision value is the first element of Vp[]: 
   Vp[]≠ ⊥

13.5.1.2 Consensus Using S
Chandra and Toueg proposed the following algorithm for asynchronous consensus 
using a strong failure detector S. This algorithm is structurally similar to the previ-
ous algorithm, but runs in three phases. Phase 1 is similar to the first phase of the 
previous algorithm. However, recall that the weak accuracy property of S allows some 
correct processes to be suspected by other correct processes—somehow, a few cor-
rect processes may not receive the messages from a few other correct processes. As a 
result, the values of Vp for each process p may not be identical after phase 1. Phase 2 
takes additional steps that enable each nonfaulty process p to refine its Vp, so that they 
become identical for all nonfaulty process. Phase 3 generates the final decision value 
using a choice function.

program Consensus with S {program for process p}
define Vp, Dp: array[0..n−1] of input values
initially Vp=(⊥,⊥,⊥,…,⊥)
Vp[p]:= input of p; Dp:=Vp; rp:=1
(Phase 1)
Same as phase 1 of consensus with P but runs for n (instead of t + 1) 
rounds

(Phase 2)
 send (rp,Dp,p) to each q ≠ p;
 wait for (rq,Dq,q) from all each q ≠ p; {or q becomes a suspect}
 for k = 0 to n − 1
 if ∃ (rq,Dq,q):Dq[k] = ⊥ ∧ Vp[k] ≠ ⊥ →
 Vp[k]: = ⊥; Dp[k]: = ⊥
 fi
(Phase 3) Decide on the first element Vp [j]: Vp [j] ≠ ⊥

13.5.1.3 Rationale
At the end of phase 1, Vp may not be identical for every correct process p. The action 
∃ (rq, Dq, q): Dq[k] = ⊥∧ Vp[k] ≠ ⊥ → Vp[k]: = ⊥; Dp[k]: = ⊥ (in phase 2) helps p realize that 
q did not receive the input from process k and prompts p to delete the controversial input 
from Vp. As a result, when phase 2 ends, ∀p,q : Vp = Vq holds. Since there is at least one cor-
rect process that is not suspected by any correct process, at least of one of the elements in Vp 
contains a valid input value. Therefore, phase 3 produces a common value for every process.
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13.5.1.4 Implementing a Failure Detector
There is no magic in the implementation of a failure detector. Such implementations invari-
ably depend on timeout and some secondary information about suspects observed and 
propagated by other processes. By extending the timeout period, one can only get a better 
estimate of the list of suspects. Since a weak failure detector has fewer requirements, the 
implementations better approximate the weaker version than the stronger versions.

13.6 CONCLUDING REMARKS
While distributed consensus in asynchronous distributed systems has been a rich area of the-
oretical research, most practical applications rely on synchronous or partially synchronous 
models. For consensus in the presence of byzantine failure, the signed message algorithm 
has much better resiliency compared to the oral message version. Dolev and Strong [DS82] 
demonstrated a solution to byzantine consensus in polynomial time. Dolev [D82] also stud-
ied the byzantine consensus problem in topologies that are not completely connected and 
demonstrated that to tolerate m failures, the graph should be at least (2m + 1) connected.

The Paxos algorithm has several variations. Google used Paxos in their Chubby fault-
tolerant system [B06] that implements a distributed locking mechanism for data centers. 
Chubby uses replication for fault tolerance.

Failure detector is an important component of group communication service. The 
emphasis of the work is on the classification of detectors, on their computing powers, and 
on the various methods of simulating stronger classes of detectors from the weaker ones. 
In [CT96], Chandra and Toueg showed that the eventually weak failure detector ◊W, which  
provides very little information about which processes have crashed, is sufficient to solve 
consensus in asynchronous systems with a majority of correct processes. Also, failure 
detectors that are perpetually accurate (like P, S) can solve consensus with any number of 
failures, whereas failure detectors with eventual accuracy solve consensus if and only if a 
majority of the processes are correct.

All results in this chapter use the deterministic model of computation. Many impossi-
bility results can be circumvented when a probabilistic model of computation is used (see 
Ben-Or’s paper [B83]). These solutions have not been addressed here.

13.7 BIBLIOGRAPHIC NOTES
Fischer et al. [FLP85] presented the impossibility of distributed consensus in asynchro-
nous distributed systems. During the ACM PODC 2001 Conference, the distributed sys-
tems (PODC) community voted this paper as the most influential paper in the field (later 
renamed as Dijkstra Prize after Edsger W. Dijkstra since 2003).

Byzantine failures were identified by Wensley et al. in the SIFT project [WLGt78] for 
aircraft control. The two algorithms for solving byzantine agreement are due to Lamport 
et al. [LSP82]. This paper started a flurry of research activities during the second half of the 
1980s. The proof of the impossibility of byzantine agreement with three generals and one 
traitor is adapted from Fischer et al. [FLM86], where a general framework of such proofs 
has been suggested. Lamport [L83] also studied a weaker version of byzantine agree-
ment that required the validity criterion to hold only when there are no faulty processes. 
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The polynomial time algorithm for byzantine consensus can be found in [DS82]. Dolev 
[D82] also studied byzantine agreement in networks that are not completely connected. 
Coan et al. [CDD+85] studied a different version of agreement called the distributed firing 
squad problem, where the goal is to enable processes to start an action at the same time: 
If any correct process receives a message to start DFS synchronization, then eventually all 
correct processes will execute the fire action at the same step.

A simple description of the basic Paxos algorithm is available in Lamport’s article [L01]. 
Burrows described the Chubby distributed locking service in [B06].

Chandra and Toueg [CT96] introduced failure detectors. Their aim was to cope with the 
well-known impossibility result by Fischer et al. [FLP85] for asynchronous distributed sys-
tems. The result on the weakest failure detector for solving consensus appears in [CHT96]. 
In 2010, Chandra and Toueg received the Dijkstra prize for their contributions in failure 
detectors.

EXERCISES
13.1  Seven members of a family interviewed a candidate for the open position of a cook. 

If the communication is purely asynchronous and message-based, and decisions are 
based on majority votes, then describe a scenario to show how the family can remain 
undecided, when one member disappears after the interview.

13.2  Present an example to show that in a synchronous system, byzantine agreement 
cannot be reached using the oral message algorithm when there are six generals and 
two traitors.

13.3  Two loyal generals are planning to coordinate their actions for conquering a stra-
tegic town. To conquer the town, they need to attack at the same time; otherwise, if 
only one of them attacks and the other does not attack at the same time, then the 
generals are likely to be defeated. To plan the attack, they send messages back and 
forth via trusted messengers. The communication is asynchronous. However, the 
messengers can be killed or captured—so the communication is unreliable.

Argue why it is impossible for the two generals to coordinate their actions of 
attacking at the same time.

(Hint: Unlike the byzantine generals problem, here all generals are loyal, but the 
communication is unreliable. If general A sends a message attack at 2 a.m. to gen-
eral B, then he will want an acknowledgment from B; otherwise, he won’t attack in 
the fear of moving alone. But B also will ask for an acknowledgment of the acknowl-
edgment. Now you see the rest of the story.)

13.4  Prove that in a connected network of generals, it is impossible to reach byzantine 
agreement with n generals and m traitors, the connectivity of the graph ≤ 2m + 1. 
(The connectivity of a graph is the minimum number of nodes whose removal 
results in a partition.) (See [D82]).

13.5  A synchronous distributed system consists of 2n processes, and its topology is an 
n-dimensional hypercube. What is the maximum number of byzantine failures that 
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can be tolerated when the processes want to reach a consensus? [The result should 
follow from Q4.]

13.6  Using oral messages, the byzantine generals algorithm helps reach a consensus 
when less than one-third of the generals are traitors. However, it does not suggest 
how to identify the traitors. Examine if the traitors can be identified without any 
ambiguity.

13.7  In the context of failure detectors in asynchronous distributed systems, eventual 
accuracy is a weaker version of the accuracy property of failure detectors; however, 
there is no mention of the eventual completeness property. Why is it so?

13.8  If one can design a perfect failure detector, then consensus problems can be easily 
solved. What are the hurdles in the practical implementation of a perfect failure 
detector?

13.9  Implement a perfect failure detector P using an eventually perfect failure detector ◊P.
13.10  In an asynchronous distributed system whose topology is a completely connected 

network, each process has a perfect failure detector. How can you elect a leader 
using the perfect failure detector?
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C h a p t e r  14

Distributed Transactions

14.1 INTRODUCTION
Amy wakes up in the morning and decides to transfer a sum of $200 from her savings 
account in Colorado to her checking account in Iowa City where the balance is so low that 
she cannot write a check to pay her apartment rent. She logs into her home computer and 
executes the transfer that is translated into a sequence of the following two operations:

• Withdraw $200 from Colorado State bank account 4311182.

• Deposit the said amount into Iowa State bank account 6761125.

The next day, she writes a check to pay her rent. Unfortunately, her check bounced. 
Furthermore, it was found that $200 was debited from her Colorado account, but due to a 
server failure in Iowa City, no money was deposited to her Iowa account.

Amy’s transactions had an undesirable end result. A transaction is a sequence of server 
operations that must be carried out atomically (which means that either all operations 
must be executed or none of them will be executed at all). Amy’s bank operations violated 
the atomicity property of transactions and caused problems for her. Certainly this is not 
desirable. It also violated a consistency property that corresponds to the fact that the total 
money in Amy’s accounts will remain unchanged during a transfer operation. A transac-
tion commits when all of its operations complete successfully and the states are appropri-
ately updated. Otherwise, the transaction aborts, which implies no change will take place 
and the old state will be retained.

In real life, all transactions must satisfy the following four properties regardless of server 
crashes or omission failures:

Atomicity: Either all operations are completed or none of them is executed.

Consistency: Regardless of what happens, the database must remain consistent. In this 
case, Amy’s total balance must remain unchanged.
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Isolation: If multiple transactions run concurrently, then it must appear as if they were 
executed in some arbitrary sequential order. The updates of one transaction must not 
be visible to another transaction until it commits.

Durability: Once a transaction commits, its effect will be permanent.

These four properties are collectively known as ACID properties, a term coined by Härder 
and Reuter [HR83]. The implementation of these goals is the main task in the implementa-
tion of a transaction. Readers may wonder whether these properties could be enforced via 
mutual exclusion algorithms, by treating the transaction as a critical section. In principle, 
this would have been possible, if there were no failures. However, mutual exclusion algo-
rithms discussed so far rule out failures, so newer methods are required for the implemen-
tation of transactions.

14.2 CLASSIFICATION OF TRANSACTIONS
Transactions can be classified into several different categories. A few of these are listed in 
the following:

14.2.1 Flat Transactions

A flat transaction consists of a set of operations on objects. For example, Amy has to travel 
to Stuttgart from Cedar Rapids, so she books flights in the following three sectors: Cedar 
Rapids to Chicago, Chicago to Frankfurt, and Frankfurt to Stuttgart. These three bookings 
collectively constitute a flat transaction (Figure 14.1a). No operation on the objects of a flat 
transaction is itself a transaction.

Cedar rapids to
Chicago

Chicago to
Frankfurt

Frankfurt to
Stuttgart

Flight Hotel Car

Sunday Monday Sunday MondayCID-SFO SFO-CID

(a)

(b)

Trip

Vacation

FIGURE 14.1 (a) A flat transaction and (b) a nested transaction.
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14.2.2 Nested Transactions

A nested transaction is an extension of the transaction model. It allows a transaction to contain 
other transactions. For example, in Figure 14.1a, the trip from Frankfurt to Stuttgart can itself 
be a transaction, if this trip is composed of a number of shorter train rides. Clearly, a nested 
transaction has a multilevel tree structure. The nonroot transactions are called subtransac-
tions. As another example, note that many airlines offer the vacationers hotel accommodation 
and automobile reservation along with flight reservation. Here, the top-level transaction vaca-
tion is a nested transaction that consists of three subtransactions (Figure 14.1b):

• A flight from Cedar Rapids to San Francisco and back

• A hotel room in San Francisco for 2 days

• A car in San Francisco for 2 days

Such extensions of the transaction model are useful in the following way: It may be the case 
that the flights and the hotel room are available, but not the car—so the last subtransaction 
will abort. In such cases, instead of aborting the entire transaction, the main transaction 
may (1) look for alternative modes of sightseeing (like contracting a tour company) or 
(2) observe that the car is not available, but still commit the top-level transaction with the 
information about possible alternative choices and hope that the availability of the trans-
port can be sorted out later.

Subtransactions can commit and abort independently, and these decisions can be taken 
concurrently. In case two subtransactions access a shared object, the executions will be 
serialized.

14.2.3 Distributed Transactions

Some transactions involve a single server, whereas others involve objects managed by mul-
tiple servers. When the objects of a transaction are distributed over a set of distinct servers, 
the transaction is called a distributed transaction. A distributed transaction can be either 
flat or nested. Amy’s money transfer in the introductory section illustrates a flat distributed 
transaction.

14.3 IMPLEMENTING TRANSACTIONS
Transaction processing may be centralized or distributed. In centralized transaction 
 processing, a single transaction manager (TM) manages all operations. We outline two 
different methods of implementing such transactions. One implementation uses a private 
workspace for each transaction. The method consists of the following steps:

 1. At the beginning, allocate the transaction a private workspace, and copy all files or 
objects that it needs.

 2. Read/write data from the files or carry out appropriate operation on the objects. Note 
that changes will take place in the private workspace only.
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 3. If all operations are successfully completed, then commit the transaction by  writing 
the updates into the permanent record. Otherwise, the transaction will abort, 
which is implemented by not writing the updates. The original state will remain 
unchanged.

Another method of implementing transactions uses a write-ahead log. A write-ahead log 
records the current state of the transaction before it updates the objects. The content of 
the log is

 (Transaction id, disk block number, old value, new value)

By assumption, these logs are not susceptible to failures. If the transaction commits, then 
the log is discarded. On the other hand, if the transaction aborts, then the log is used 
to undo the changes and restore the database to a consistent state. The log can also be 
used to rerun the transaction after a failure.

The implementation of distributed transactions is much more tricky. Here, each  computer 
has a local TM, and these TMs interact with the data managers that are  geographically 
 distributed (Figure 14.2). The problem of atomic commitment becomes challenging when 
one TM fails but the others continue to work as usual. Thus, in a transaction (x ≔ x − 100; 
y ≔ y + 100) where x and y belong to different databases, if the TM crashes after completing 
the operation x ≔ x − 100, then the database becomes inconsistent.

Transaction
manager 1

Transaction
manager 2

Data
manager 1

Data
manager 2

Database Database

Scheduler 1 Scheduler 2

Clients Clients

Data
manager 3

Database

Scheduler 3

Clients

Server A Server B Server C

Transaction
manager 3

FIGURE 14.2 The handling of distributed transactions.
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14.4 CONCURRENCY CONTROL AND SERIALIZABILITY
The goal of concurrency control is to guarantee that when multiple transactions are con-
currently executed, the net effect is equivalent to executing them in some serial order. This 
is the essence of the serializability property.

Concurrent transactions dealing with disjoint objects are trivially serializable. However, 
when objects are shared among concurrent transactions, an arbitrary interleaving of the 
operations may not satisfy the serializability property. The consistency properties can be 
violated in several ways, two of which are illustrated here.

Lost update problem: Amy and Bob have a joint account in a bank. Each of them 
 independently deposits a sum of $250 to their joint account. Let the initial balance in 
the account be B = $1000. After the two updates, the final balance should be $1500. Each 
deposit is a transaction that consists of a sequence of three operations as shown in the 
following:

No. Amy’s Transaction No. Bob’s Transaction

1 local ← B 4 local ← B
2 local ← local + $250 5 local ← local + $250
3 B ← local 6 B ← local

The final value of B will very much depend on how these operations are interleaved. When 
the interleaving order is (1 2 3 4 5 6) or (4 5 6 1 2 3), the final value of B becomes $1500. 
However, if the interleaving order is (1 4 2 5 3 6) or (1 2 4 5 6 3), then the final value 
will be only $1250! What happened to the other deposit? This is the essence of the lost 
update problem.

Serializability can be satisfied by properly scheduling the conflicting operations. The 
operations on a shared object are either read or write. Two operations on a shared object 
are said to be conflicting, when at least one of them is a write operation. In the example of 
Amy or Bob’s transactions, B is the shared object and (3, 4), (1, 6), or (3, 6) are conflicting 
operations. The improper scheduling of these operations can be avoided via locking (as in 
two-phase locking [2PL]) or by time stamp ordering.

Dirty read problem: Even when serializability property is satisfied, the abortion of a 
transaction can lead to sticky situations. For example, suppose the operations in Amy 
and Bob’s transactions are scheduled as (1 2 3 4 5 6), which is a correct schedule satisfy-
ing the serializability criterion. Consider the scenario in which first Amy’s transaction 
aborts and then Bob’s transaction commits. The balance B will still be set to $1500, 
although it should have been set to only $1250. The cause of the anomaly is that Bob’s 
transaction read a value of B (updated by step 3) before Amy’s transaction decided to 
abort. This is called the dirty read problem.
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Premature write problem: As another example of a problem situation caused by the 
 abortion of a transaction, consider a shared variable B whose initial value is 0, and there 
are two concurrent transactions T1 ≡ B ← 500 and T2 ≡ B ← 1000. Depending on the order 
in which the two transactions complete, we will expect that B will be set to either 500 or 
1000. Assume that they are executed in the order (T1; T2). Let T2 commit first (raising the 
balance B to 1000), but T1 abort thereafter (changing the value of B to 0). Clearly, this is 
not acceptable. This problem is called the premature write problem. The problem could be 
avoided, if T2 delayed the writing of B until T1’s decision to commit or abort was taken. If 
the earlier transaction aborts, then the later transaction must also abort. To avoid dirty 
reads and premature writes, a transaction must delay its read or write operations until the 
transactions scheduled earlier either commit or abort.

14.4.1 Testing for Serializability

Concurrent transactions commonly use locks with conflicting operations on shared 
objects. One method of testing whether a schedule of concurrent transactions satisfies 
the serializability property is to create a serialization graph. The serialization graph is a 
directed graph G = (V, E), where V is the set of transactions and E is the set of directed 
edges between transactions: a directed edge (Tj → Tk) implies that transaction Tk acquired 
a lock only after transaction Tj released that lock. The following theorem tests the serializ-
ability property:

Theorem 14.1

For a schedule of concurrent transactions, the serializability property holds if and only if 
the corresponding serialization graph is acyclic.

For a proof of this theorem, see [BHG87].

14.4.2 Two-Phase Locking

Prior to performing an operation on an object, a transaction will request for a lock for that 
object. A transaction will be granted an exclusive lock for all the objects that it will use. 
Other transactions using one or more of these objects will wait until the previous transac-
tion releases the lock. In the case of Amy or Bob, the locks will be acquired and released 
as follows:

lock B
 local ← B
 local ← local + $250
 B ← local
unlock B

Accordingly, the only two feasible schedules are (1 2 3 4 5 6) and (4 5 6 1 2 3), which satisfy 
the serializability property.
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The previous example is in a sense trivial, since only one lock is involved and atomicity 
of the transaction implies serializability. To implement serializability with multiple objects 
and multiple locks, a widely used method is 2PL. Two-phase locking guarantees that all 
pairs of conflicting operations on shared objects by concurrent transactions are always 
executed in the same order. The two phases are as follows:

Phase 1: The scheduler acquires all locks one after another without releasing any lock. 
This is called the growing phase or acquisition phase.

Phase 2: The scheduler releases all locks acquired so far without acquiring any new lock. 
This is called the shrinking phase or the release phase.

Two-phase locking prevents a transaction from acquiring any new lock after it has released 
a lock, until all locks have been released. Locking can be fine grained. For example, there 
can be separate read locks or write locks for an object. A read operation does not conflict 
with another read operation, so the data manager can grant multiple read locks for the 
same shared data. Only in the case of conflicts, the requesting transaction has to wait for 
the lock.

The actions of the two phases alone do not rule out the occurrence of deadlocks. Here 
is a simple example of how deadlock can occur. Suppose there are two transactions T1 and 
T2, each needs to acquire the locks on objects x and y. Let T1 acquire the lock on x and T2 
acquire the lock on y. Since each will now try to acquire the other lock and no transaction 
will release a lock until its operation is completed, both will wait forever resulting in a 
deadlock. However, a sufficient condition for avoiding deadlocks is to require all transac-
tions to acquire the required locks in the same global order—this avoids circular waiting. 
This completes the final requirement of 2PL.

Theorem 14.2

Two-phase locking guarantees serializability.

Proof (by contradiction): Assume that the statement is not true. From Theorem 14.1, it 
follows that the serialization graph must contain a cycle

 � � �T T T T Ti j k m i→ → → → →

This implies that Ti must have released a lock (that was later acquired by Tj) and then 
acquired a lock (released by Tm). However, this violates the condition of 2PL that rules out 
acquiring any lock after a lock has been released. ◾
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14.4.3 Concurrency Control via Time Stamp Ordering

A different approach to concurrency control avoids any form of locking and relies solely 
on time stamps. Each transaction Ti is assigned a time stamp TS(i) when it starts, and 
the same time stamp TS(i) is assigned to all read and write accesses of every object x 
by Ti. Time stamp ordering makes an a priori selection of the serialization order and 
forces the transaction execution to obey that order. In particular, conflicting operations 
on a shared variable x will be granted read or write access only if it comes in time stamp 
order—otherwise, the access will be denied, and the transaction will abort and restart 
at a later time with a new time stamp. There are several different versions of scheduling 
reads and writes based on time stamps—here, we only discuss the basic version of time 
stamp ordering.

Time stamp ordering assigns two time stamps RTS and WTS to each object x—their 
values are determined by the time stamps of the transactions performing read or write 
on x. Let RTS(x) be the largest time stamp of any transaction that reads x and WTS(x) 
be the largest time stamp of any transaction that updates x. Now, if a transaction Tj 
requests access to x, then the time stamp ordering protocol will handle the request as 
follows:

{Transaction Tj wants to read x}
if TS(j) ≥ WTS(x) → allow read; RTS(x) ≔ max(RTS(x),TS(j))
[]TS(j) < WTS(x) → deny read {transaction aborts}
fi
{Transaction Tj wants to write x}
if TS(j) ≥ max(WTS(x),RTS(x)) → allow write; WTS(x) ≔ max 
(WTS(x), TS(j))

[]TS(j) < max(WTS(x),RTS(x)) → deny write {transaction aborts}
fi {After a transaction aborts, it restarts with a new larger 
time stamp.}

Consider the examples in Figure 14.3, where there are three concurrent transactions T1, T2, 
and T3. In Figure 14.3a, all transactions will commit without any problem. In Figure 14.3b, 
both T1 and T2 will abort—the schedulers will not schedule their r[x] operations since the 
largest WTS is 50, which is greater than the time stamps of the transactions T1 and T2. If 
these reads were scheduled, then they would have returned a value different from what 
T1 or T2 wrote and thus violate atomicity. In Figure 14.3c, once again, both T1 and T2 will 
abort, but for a different reason, the schedulers will not schedule their w[x] operations since 
the largest WTS is 50. These writes, if scheduled, would have affected the outcome of the 
r[x] by T3.

14.5 ATOMIC COMMIT PROTOCOLS
A distributed transaction deals with data from multiple servers. Each server completes a 
subset of the operations belonging to the transactions. At the end, for each  transaction, 
all servers must agree to a final irrevocable decision regardless of crash or omission 
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failures—the final decision must be either commit or abort. An atomic commit protocol 
solves a variation of the consensus problem (Chapter 13) with the following specifications:

Termination: All nonfaulty servers must eventually reach an irrevocable decision.

Agreement: If any server decides to commit, then every server must have voted to commit.

Validity: If all servers vote commit and there is no failure, then all servers must commit.

The agreement property implies that all servers reach the same decision. In the clas-
sic consensus problem, if some servers vote commit but others vote abort, then the final 
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FIGURE 14.3 Examples of concurrency control using time stamp ordering. Here, r[x] and w[x] 
refer to read and write operations on the shared variable x. (a)–(c) illustrate three different scenarios.
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irrevocable decision could have been commit—however, here, the agreement clause of the 
atomic commit problem rules out this possibility. We now look into the implementation of 
atomic commit protocols.

14.5.1 One-Phase Commit

In implementing atomic commit protocols, one of the servers is chosen as the coordi-
nator. A client sends a request to open a transaction to an accessible server. This server 
becomes the coordinator for that transaction. Other servers involved in this transac-
tion are called participants. The coordinator will assign relevant components of this 
transaction to its participants and ask them to commit when they are done. This is 
the essence of one-phase commit protocol. It is expected that the participants will be 
able to complete the tasks assigned to them. If due to local problems (like failure or 
concurrency control conflict) some participants are unable to commit, then neither 
the coordinator nor other participants will know about this (since everything has to 
be completed in a single phase), and atomicity will be violated. So each participant 
has to assume the responsibility for local failure recovery. This is a somewhat naive 
approach for implementing atomic transactions. A much more pragmatic approach is 
the  two-phase  commit (2PC) protocol.

14.5.2 Two-Phase Commit

2PC protocols (Figure 14.4a) overcome the limitations of one-phase commit protocol. 
The two phases of the protocol are as follows:

Phase 1: The coordinator sends out a PREPARE message to each participant, ask-
ing them to respond whether they are ready to commit (by voting yes) or prefer 
to abort (by voting no). When the participants respond, the coordinator collects 
their votes.

Yes

Yes

NoTransaction
coordinator

Data managers
(participants)

Prepare

Prepare

Prepare

Transaction
coordinator

?

Participant 1

Participant 2
(phase 2)

(a) (b)

FIGURE 14.4 (a) Implementation of 2PC and (b) participant 2 is blocked.
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Phase 2: If all servers vote yes at the end of phase 1, then in phase 2, the coordinator 
will send a COMMIT message to all participants. Otherwise, if at least one server 
votes no, then the coordinator will send out an ABORT message to all participants. 
Each  participant sending a yes vote waits to receive an ABORT or a COMMIT message 
from the coordinator and takes appropriate actions thereafter. The steps are as follows:

program 2PC
{program for the coordinator}
{Phase 1: prepare}
 Send PREPARE to all participants;
 Wait to receive the vote (yes or no) from each participant
  {Phase 2: commit}
if ∀participant j: vote(j) = yes → multicast COMMIT to all
 participants
[] ∃ participant j: vote (j) = no → multicast ABORT to all
 participants
fi
{program for each participant}
if {Phase 1} message from coordinator = PREPARE → send yes or no
[] {Phase 2} message from coordinator = COMMIT → commit local actions
[] {Phase 2} message from coordinator = ABORT → abort local actions
fi

In phase 2, if the coordinator sends a COMMIT message, then each participant updates 
its local log, releases all locks, and sends a DONE message to the coordinator. After the 
coordinator receives DONE messages from all participants, it writes the complete record 
into its log and deletes the record from its volatile store.

Failure handling: The basic two-phase protocol may run into difficult situations when fail-
ures occur. A server may fail by crashing and thus may fail to respond. Also, messages may 
be lost. This makes the implementation of the 2PC protocol nontrivial. In a purely asyn-
chronous environment, when the coordinator or a participant is blocked while waiting 
for a message, it cannot figure out if the sender crashed or the message is lost or delayed. 
Although time-out is used to detect message losses and process failures, it is not foolproof. 
Therefore, in case of any doubt, the system should ideally revert to a fail-safe configuration 
by aborting all  transactions. Some specific failure scenarios and their remedies are sum-
marized as follows:

Case 1: (Phase 1) The coordinator times out waiting for a vote message from a partici-
pant. To deal with possible message loss, the coordinator may send the PREPARE 
message a bounded number of times. If there is no response, then the coordinator 
decides to abort the transaction and sends ABORT to all.

Case 2: (Phase 2) A participant times out waiting for a COMMIT or an ABORT  message 
from the coordinator. The participant has no knowledge of the coordinator’s 
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 decision, so it cannot unilaterally decide since that may violate the atomicity. The 
participant remains blocked while sending a get status message to the coordinator 
asking for its decision. When the coordinator receives such a message, it checks 
if a record exists in its volatile memory and replies accordingly. Otherwise, it 
sends an ABORT to the participant. However, if the coordinator crashes, then the 
participant remains undecided until the coordinator recovers from the failure. 
It has no clue if other participants received a COMMIT or an ABORT message 
before the coordinator crashed. So, for an indefinite period, resources may remain 
locked, affecting other transactions. One possible solution for the blocked partici-
pant is to query a nonfaulty participant: What  message (COMMIT or ABORT) did 
you get from the coordinator? If the answer is COMMIT, then the participant will 
commit its local transaction; otherwise, it will abort.

But now consider the more difficult case of multiple server failures as described 
in the following:

Case 3: (Phase 2) Consider the case when both the coordinator and a participant 
have crashed (Figure 14.4b), but a second participant has voted yes in phase 1 and 
is waiting for a commit or an abort message in phase 2 from the coordinator. If 
one of the crashed participants decided to abort, then the second participant must 
abort. On the other hand, if the crashed participant decided to commit before 
the crash, then the second participant must commit. With these two conflicting 
possibilities, the second participant has little choice but to wait, until the crashed 
servers recover.

The previous situation may be rare, but it ref lects that 2PC is a blocking protocol: 
the  operational servers may sometimes have to wait indefinitely on the recovery of 
a failed server. Locks must be held on the database while the transaction is blocked. 
To improve  failure handling, Skeen and Stonebraker [SkS83] proposed three-phase 
 commit (3PC)  protocol. It is a nonblocking protocol. An atomic commitment pro-
tocol is called  nonblocking, if in spite of crashes, every nonfaulty server eventually 
decides—this implies that the operational servers will not block until the recovery of 
the failed servers.

14.5.3 Three-Phase Commit

The 3PC protocol removes the uncertainty in the two-phase protocol caused by the  failures 
of the coordinator and a participant. Phase 1 is similar to that in 2PC: A time-out in this 
phase will prompt the coordinator to abort of the transaction. Phase 2, the precommit phase, 
is the new addition. This phase is meant to remove the uncertainty period for  participants 
that have committed and are waiting for the final commit or abort message from the 
 coordinator. If a precommit message is not received, then the participant will abort and 
release any blocked resources. When receiving a precommit message,  participants know 
that all others have voted to commit. After this, even if the coordinator crashes or times 
out, the participant goes forward with the commit.
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program 3PC
{program for the coordinator}
{Phase 1: prepare} Send PREPARE to all participants;
    Wait to receive the vote from each participant
{Phase 2: prepare to commit}
if ∀ participant j: vote(j) = commit → multicast PRECOMMIT to all
  participants;

wait to receive ack from 
the participants

[] ∃ participant j: vote (j) = abort → multicast ABORT to all participants
fi
{Phase 3: commit}
if majority of participants sends ack → multicast COMMIT to all
 participants;
[] majority does not send ack → multicast ABORT to all participants
fi
{program for each participant}
if {Phase 1} message from coordinator = PREPARE → send commit or abort
[] {Phase 2} message from coordinator = PRECOMMIT → send ack
[] {Phase 3} message from coordinator = COMMIT → commit local actions
[] {Phases 2 and 3} message from coordinator = ABORT → abort 
local actions

fi

14.6 RECOVERY FROM FAILURES
Atomic commit protocols enable transactions to tolerate server crashes or omission  failures, 
so that the system remains in a consistent state. However, to make transactions durable, we 
would expect servers to be equipped with incorruptible memory. A random access mem-
ory (RAM) loses its content when there is a power failure. An ordinary disk may crash, 
and thus, its contents may be lost forever—so it is unsuitable for archival  storage. A form of 
archival memory that can survive all single failures is known as a stable storage, introduced 
by Butler Lampson.

14.6.1 Stable Storage

A stable storage can be implemented using a pair of ordinary disks. Let A be a composite 
object with components A0, A1, A2, …, An−1. Consider a transaction that assigns a new value 
xi to each component Ai. We will represent this by A ≔ x. This transaction is atomic, when 
either all assignments Ai ≔ xi are completed or no assignment takes effect. Ordinarily, a 
crash failure of the updating process will potentially allow a fraction of these assignments 
to be completed and violate the atomicity property.

The stable storage maintains two copies* of the object A (i.e., two copies of each 
 component Ai) and allows two operations update and inspect on A. Designate these two 

* The technique is called mirroring and is used in RAID1 disk systems.
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copies by A0 and A1 (Figure 14.5). When a process P performs the update operation, it 
updates the two copies alternately and stamps these updates with (1) the time stamp T and 
(2) a unique signature S called checksum, which is a function of x and T.

A fail-stop failure can halt the update operation after any step. Process Q, which  performs 
the inspect operation, checks both copies and, based on the times of updates as well as the 
values of the checksums, chooses the correct version of A.

{procedure update}
1 A0 ≔ x;   {copy 0 updated}
2 T0 ≔ timestamp;  {timestamp assigned to copy 0}
3 S0 ≔ checksum(x,T0); {signature assigned to copy 0}
4 A1 ≔ x;   {copy 1 updated}
5 T1 ≔ timestamp;  {timestamp assigned to copy 1}
6 S1 ≔ checksum(x,T1) {signature assigned to copy 1}

{procedure inspect}
[a] if S0 = checksum(A0,T0) ∧ S1 = checksum(A1,T1) ∧ T0 > T1 → accept A0
[b] [] S0 = checksum(A0,T0) ∧ S1 = checksum(A1,T1) ∧ T0 < T1 → accept any
[c] [] S0 = checksum(A0,T0) ∧ S1 ≠ checksum(A1,T1) → accept A0
[d] [] S0 ≠ checksum(A0,T0) ∧ S1 = checksum(A1,T1) → accept A1
fi

Case [a] corresponds to a possible failure between steps 3 and 4 of an update. Case [b] 
 represents no failure—so any one of the copies is acceptable. Case [c] indicates a failure 
between steps 4 and 6, and case [d] indicates a failure between steps 1 and 3. As long as 
the updating process fails by stopping at any point during steps 1–6 of the update opera-
tion, one of the guards A–D becomes true for process Q. The application must be able to 
 continue regardless of whether the old or in the new state is returned.

The two copies A0 and A1 are stored on two disks mounted on separate drives. Data can 
also be recovered when instead of a process crash one of the two disks crashes. Additional 
robustness can be added to the previous design by using extra disks.

A0

A1

P Q

update

update inspect

inspect

FIGURE 14.5 The model of a stable storage: P performs the update operation and Q performs the 
inspect operation.



Distributed Transactions   ◾   311  

14.6.2 Checkpointing and Rollback Recovery

Consider a distributed transaction and assume that each process has access to a stable 
storage to record its local state. Failures may hit one or more processes, making the global 
state inconsistent. Checkpointing is a mechanism that enables transactions to recover from 
such inconsistent configurations using backward error recovery. When a transaction is 
in progress, the states of the participating servers are periodically recorded on the local 
stable storages. These fragments collectively define a checkpoint. Following the detection 
of a failure, the system state rolls back to the most recent checkpoint, which completes the 
recovery. The technique is not limited to transactions only, but is applicable in general to 
all message-passing distributed systems.

In a simple form of checkpointing, each process has the autonomy to decide when to 
record checkpoints. This is called independent or uncoordinated checkpointing. For example, 
a process may decide to record a checkpoint when the information to be saved is small, since 
this will conserve storage. However, a collection of unsynchronized snapshots may not rep-
resent a meaningful or consistent global state (see Chapter 8). To restore the system to a con-
sistent global state, intelligent rollback is necessary. If the nearest checkpoint does not reflect 
a consistent global state, then rollback must continue until a consistent checkpoint is found. 
In some cases, it may trigger a domino effect. We illustrate the problem through an example.

In Figure 14.6, three processes P, Q, and R communicate with one another via message 
passing. Let each process spontaneously record three checkpoints for possible rollback—
these are marked with bold circles. Now, assume that process R failed after sending its last 
message m7. So its state will roll back to r2. Since the sending of the message by R is nulli-
fied, its reception of m7 by Q also must be nullified, and the state of Q will roll back to q2. 
This will nullify the sending of the last message m5 by Q to P, and therefore, the state of P 
has to roll back to p2.

But the rollbacks do not end here. Observe that (p2, q2, r2) does not represent a  consistent 
global state. Process R has to undo the sending of its previous message m6, and its local 
state now has to revert to r1. This will cause Q to revert its state to q1. Eventually, the 
processes have to roll back all the way to their initial checkpoints (p0, q0, r0), which by 
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FIGURE 14.6 An example of domino effect in uncoordinated checkpointing: The dark circles rep-
resent the local states of processes saved on stable storage. If R crashes after sending its last message 
m7 to Q, then the global state of the system will eventually roll back to (p0, q0, r0).
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definition is a valid checkpoint (since no messages were exchanged before it). So the entire 
computation is lost despite all the space used to record the nine checkpoints. If process P 
recorded its last checkpoint after sending the last message, then the computation could 
have rolled back only to (p2, q2, r2). This would have been possible with coordinated check-
pointing. Coordinated checkpoints can be recorded using Chandy–Misra’s distributed 
snapshot algorithm (when the channels are FIFO) or Lai–Yang’s algorithm (when the FIFO 
guarantee of channels does not exist) (see Chapter 8).

There are some computations that communicate with the outside world and cannot 
be reversed during a rollback. A printer that has printed a document cannot be asked to 
reverse its action for the sake of failure recovery, nor can an ATM machine that has dis-
pensed some cash to a customer be expected to retrieve the cash from a customer. In such 
cases, logging is used to replay the computation. All messages received from the environ-
ment are logged before use, and all messages sent to the environment are logged before 
they are sent out. During a replay, these logged messages are used to substitute the interac-
tion with the outside world.

14.6.3 Message Logging

Message logging is a general technique for improving the efficiency of checkpoint-based 
recovery following crash failures. Checkpointing involves writing a complete set of states 
on the stable storage, and frequent checkpointing slows down the normal progress of the 
computation. For coordinated checkpointing, add to that the overhead of synchronizing 
the recording instants. On the other hand, infrequent checkpointing may cause significant 
amount of rollback when failures occur, which adds to the cost of recovery. Message  logging 
helps us strike a middle ground—even if the checkpointing is infrequent,  starting from a 
consistent checkpoint P, a more recent recovery point Q can be reconstructed by replaying 
the logged messages in the same order in which they were delivered before the crash.

Either the sender or the receiver can log messages into a stable storage. Logging takes 
time, so whether a process should wait for the completion of the logging of messages before 
delivering it to the application is an important design decision. All message-logging pro-
tocols have a common goal: Once a crashed process recovers, its state is consistent with 
the states of the other processes. Surviving processes whose states are inconsistent with 
those of other process are known as orphan processes. Inadequate message logging can lead 
to the creation of orphan processes. Message-logging protocols must guarantee that upon 
recovery, no process remains an orphan.

Figure 14.7 illustrates three messages exchanged among the processes 0, 1, 2, and 3. 
Assume that m1 and m3 were logged (into the stable storage) by the receiving processes, but 
m2 was not. If the receiver of the message m2 (i.e., process 0) crashes and later recovers, the 
state of the system can be reconstructed up to the point when m1 was received. Neither m2 
nor m3 (which is causally ordered after m2) can be correctly replayed. However,  process 3 
already received message m3. Since the sending of m3 cannot be replayed using the log, 
process 3 becomes an orphan process.

Note that, if process 1 or 0 logged m2 before the crash, then that could prevent 3 from 
being an orphan. In general, for any given message, let depend(m) be the set of processes that 
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(1) delivered m or (2) delivered a message m′ such that m ≺ m′. The reconstruction of the 
computation of every process in depend(m) will depend on the ability to replay m. Define 
copy(m) to be the set of processes that sent or received m, but did not log it. In Figure 14.5, 
depend(m2) = {0, 1, 3} and copy(m2) = {0, 1}. If every process in copy(m) crashes, then the 
transmission of m cannot be replayed. As a result, every process j ∈ depend(m)\copy(m) 
becomes an orphan.

There are two versions of logging that deal with this. In the pessimistic protocol, each 
process delivers a message only after every message delivered before it has been logged. 
Optimistic protocols cut down on the logging overhead by taking some risk that improves 
the speed during failure-free runs. When a failure occurs, the protocol determines if there 
are orphans, and the system rolls back to make the state consistent.

Many computations in a distributed system are nondeterministic. Two different runs of 
the system may lead to two different global states both of which are consistent. The order 
of arrival of the messages may vary from one run to another. In the recovery of nondeter-
ministic computations using message logging, the replayed messages simply reflect the last 
run. It does not lead to any new nondeterminism other than whatever was present in the 
original system prior to the crash.

14.7 CONCLUDING REMARKS
Time stamp ordering and 2PL are two different techniques for concurrency control, 
and these work differently. In 2PL, transactions wait for locks from time to time, but do 
not abort and restart unless a deadlock occurs. In time stamp ordering, deadlock is not 
 possible. An optimistic version of time stamp ordering thrives on the observation that 
conflicts are rare, so all transactions run without restrictions. Each transaction keeps 
track of its own reads and writes. Prior to committing, each transaction checks if those 
values have been changed (by some other transaction). If not, then the transaction com-
mits; otherwise, it aborts.

For distributed commit, the 2PC protocol has been extremely popular, although the basic 
version is prone to blocking when the coordinator crashes. The 3PC, originally proposed 
by Skeen [S83], resolves the blocking problem, but its implementation involves additional 
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FIGURE 14.7 Messages m1 and m3 have been logged by their receiving processes, but not m2. 
Process 0 crashes and then recovers. From the message log, m1 will be replayed, but not m2. This 
means the sending of m3, which is causally dependent on m2, may not be accounted for, and pro-
cess 3 becomes an orphan.
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states and extra messages. Another solution is the nonblocking 2PC by Babaõglu and Toueg 
[BT93], which is technically sound but the additional message complexity is unavoidable. 
None of these two improvisations seem to be very much in use, since blocking due to the 
crash of the coordinator is rare. Distributed systems with communication failures do not 
have nonblocking solutions to the atomic commit problem.

Checkpointing is widely used for transaction recovery. The frequent writing of global 
states on the stable storage tends to slow down the computation speed. A combination of 
infrequent checkpointing and message logging prevents massive rollbacks and potentially 
improves performance.

14.8 BIBLIOGRAPHIC NOTES
Härder and Reuter [HR83] coined the phrase ACID properties. Papadimitriou [P79]  formally 
introduced the serializability property to characterize the logical isolation of  concurrent 
transactions. Bernstein et al.’s book [BGH87] describes many important methods of con-
currency control. Eswaran et al. [EGT76] proved that 2PL satisfies serializability. Gray and 
Reuter [GR93] discussed the time stamp ordering protocol for serializable transactions. 
Kung and Robinson [KR81] described several optimistic versions of concurrency control.

The 2PC protocol is due to Gray [G78]. The blocking properties of this protocol are also 
discussed in [BGH87]. Skeen [S83] introduced the 3PC protocol.

Lampson et al. [LPS81] introduced the idea of stable storage and suggested an imple-
mentation of it. Randell [R75] wrote an early paper on designing fault-tolerant system by 
checkpointing. Strom and Yemini [SY85] studied optimistic recovery methods. Elnozahy 
et al.’s paper [EJZ92] contains a good survey of checkpointing and logging methods. Alvisi 
and Marzullo [AM98] described various message-logging methods and orphan elimina-
tion techniques.

EXERCISES
14.1  Figure 14.8 shows three transactions T1, T2, and T3. Consider concurrency con-

trol by time stamp ordering. Which of these three concurrent transactions will 
commit?

14.2  Three variables x, y, and z belong to three different servers. Now, consider transac-
tions T1 and T2 defined as follows:

 T R x R y W x W y1 10 20: ( ); ( ); ( : ); ( : )= =

 T R z W x R x W z2 30 40: ( ); ( : ); ( ); ( : )= =

Also, consider the following interleavings of the different operations:

 a. R x R y R z W x W x W y R x W zT T( ) ; ( ); ( ); ( : ); ( : ); ( : ); ( ) ; ( :1 230 10 20 40= = = = ))

 b. R z W x R x R y W x W y R x W zT T( ); ( : ); ( ) ; ( ); ( : ); ( : ); ( ) ; ( := = = =30 10 20 401 2 ))

Are these traces serializable? Justify your answer.
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14.3  In concurrency control using time stamp ordering, whenever there is a conflict, some 
transaction aborts and later restarts with a new time stamp. Consider three transac-
tions, T1, T2, and T3, in a concurrent run. Is it possible to have a scenario where every 
transaction periodically aborts and then restarts, and this behavior continues forever? 
In other words, how can you prove time stamp ordering guarantees termination?

14.4  How will you extend 2PL to nested transactions? Explain your answer with respect 
to the example of the two-level transaction shown in Figure 14.9:

14.5  Two-phase locking works for distributed transactions. As an alternative, consider 
this: There are n (n > 1) servers; each server manages m objects (m > 1). Each server 
will allow transaction sequential access to the locks on the objects managed by it. Is 
this sufficient for serializability? Is this sufficient to avoid deadlocks? Explain.

14.6  Specify two execution histories H1 and H2 over a set of transactions, so that (a) H1 
is permissible under 2PL, but not under basic time stamp ordering, and (b) H2 is 
permissible under basic time stamp ordering, but not under 2PL.

14.7  Consider the uncoordinated checkpointing in Figure 14.10 where processes P, Q, and 
R spontaneously record three checkpoints each as shown by the bold dots:

If process P crashes after recording its last state p2 as shown in Figure 14.10, then 
to which consistent checkpoint will the system state roll back to?
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40

T1 starts T1 commits?

T2 starts

T3 starts

T2 commits?

45

50

55

60

65

W(x: = 2)

W(x: = 3)

W(x: = 1) R(x)

R(x)

57

R(x) T3 commits?

FIGURE 14.8 Three concurrent transactions: T1, T2, and T3.

W(x: = 1) R(y) R(x) W(z: = 2) R(z) W(y: = 3)

T1 T2 T3

T

FIGURE 14.9 An example of a nested transaction.
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14.8  Some servers are stateful, and some others are stateless. Is checkpointing relevant to 
stateless servers too?

14.9  (Programming exercise) There are four travel agencies in a city. Each offers three 
kinds of services: airline reservation, hotel reservation, and car rental. Create a 
small database for these services. A query for a service will either return a booking 
or respond with a failure. When a failure occurs, the entire transaction is aborted.

Simulate this transaction using the 2PC protocol. Include a 5% possibility of 
server crashes. To simulate the crash, each server will randomly pick a number 
between 1 and 20. If the random value <20, then the server provides the normal 
response. If the random value = 20, then the server stops responding, which mimics 
a crash.

Run your simulation with different possible queries, and verify that your simula-
tion preserves the ACID property in spite of failures.

P
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R

p0 p1 p2

q0 q1 q2

r0 r1 r2

m1

m2
m3

m4

m5

m6

Crash

FIGURE 14.10 A set of checkpoints in three concurrent processes: P, Q, and R.
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C h a p t e r  15

Group Communication

15.1 INTRODUCTION
A group is a collection of users or objects sharing a common interest or working toward 
a common goal. With the rapid growth of the WWW and electronic commerce, group-
oriented activities have substantially increased in recent years. Examples of groups are as 
follows: (1) the batch of students who graduated from a high school in a given year, (2) the 
members of a particular travel club, (3) the students of a long-distance education course, 
(4) the members participating in a videoconference, (5) a set of replicated servers forming 
a highly available service, etc.

Groups may be classified into various types. One classification is based on whether the 
composition of members is fixed or variable. A group is called closed, when its membership 
remains unchanged. An example is the batch of students who graduated from the Sleepy 
Hollow High School in the year 2014. The other type of group, in which the member-
ship changes from time to time, is called open. The members of the travel club Himalayan 
Hikers form an open group since the existing members can leave the group, and new mem-
bers can join at any time. Another classification is based on the nature of communication: 
A group is called a peer-to-peer group when all members have equal rights and privileges 
in the group and members communicate with their peers to sustain the group activities. 
An example of an activity is the maintenance of an electronic bulletin board by the gradu-
ating students of the class of 2014 from a high school—any member could post items of 
common interest to be viewed by every other member of the group. In contrast, a group 
is called a hierarchical group, where one member is distinguished from the rest, and typi-
cally communication takes place between this distinguished member and the rest of the 
group. A stockbroker communicating with his clients forms a hierarchical group. Note 
that a hierarchical group can have multiple levels—the president of a company may want 
to communicate with the managers only, and each manager may communicate with the 
employees belonging to his or her team.
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The members of a group communicate with one another using some form of multicast* 
that is restricted to the members of that group. A message sent by any member of a group 
must be received by every member of that group or by none at all. This atomicity prop-
erty is at the heart of group communication—but there are other issues too. These include 
communication complexity, the ability to tolerate various kinds of failures, and network 
partition tolerance. Furthermore, when group membership changes in a planned or an 
unplanned way, certain guarantees must hold to preserve the integrity of group services. 
We will elaborate these issues later.

15.2 ATOMIC MULTICAST
A multicast in a group is called atomic, when the message is received either by every nonfaulty 
(i.e., functioning) member or by no member at all. Atomic multicast is a basic requirement 
of all group-oriented activities. Cases where some nonfaulty members receive a particular 
message but others do not lead to inconsistent update of the states of the members and are 
not acceptable. For example, consider a group of people forming a travel club. If a multicast 
about a special travel opportunity for the coming Christmas season is sent out, then every 
member of the travel club should receive it. Another example is a group of replicated servers. 
If the primary server fails, then a backup server is expected to take over. For this to hap-
pen, the states of all servers must be identical to that of the primary server before the failure 
occurred (via the multicasts from the primary server). However, this will not be possible if 
one or more backup servers fail to receive some of the updates from the primary server.

Clearly, failures play a prominent role in the implementation of atomic multicast. 
Accordingly, we will consider two broad classes of atomic multicasts: basic and reliable. 
Basic multicast rules out process crashes (or does not provide any guarantee when pro-
cesses crash), whereas reliable multicasts take process crash into account and provide 
guarantees. If failures are ruled out, then every basic multicast is trivially atomic. Reliable 
atomic multicasts should satisfy the following three properties:

Validity: If a correct process multicasts a message m, then it eventually delivers m.

Agreement: If a correct process delivers m, then all correct processes eventually deliver m.

Integrity: Every correct process delivers a message m at most once, only if some process 
in the group multicasts that message. The reception of spurious messages is ruled out.

The delivery of a message affects the state of the recipient and the application supported by 
it. Note that agreement does not follow from validity or vice versa—a correct process may 
start a multicast operation as a sequence of point-to-point communications and then crash.

We first address basic multicasts. At the data link layer, shared media like Ethernet LAN 
provide a natural support for multicast. In wireless networks, if each member is within the 
broadcast signal range from every other member, then every process receives the messages 
that are sent out. Hosts deliver only those messages that are addressed to them.

* Defined as one-to-many communication.
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15.3 IP MULTICAST
IP multicast is a popular technique for multicasting at the network layer. It is a bandwidth-
conserving technology that reduces traffic by simultaneously delivering a single stream 
of information to multiple clients. This is particularly suitable for large-scale applica-
tions—examples include distance learning, videoconferencing, and the distribution of 
software, stock quotes, and news. The source sends only one copy, which is replicated by 
the routers.

An arbitrary set of clients forms a group before receiving the multicast. The Internet 
Assigned Numbers Authority (IANA) has assigned class D IP addresses for IP multi-
cast. This means that all IP multicast group addresses belong to the range of 224.0.0.0 to 
239.255.255.255. The multicast group address serves as a virtual channel. Group members 
select the channel by selecting the appropriate address, and the network configures itself to 
deliver the multicast traffic to the group members. The data are distributed via a distribu-
tion tree. Members of groups can join or leave at any time, so the distribution trees must 
be dynamically updated. When all active receivers connected to a particular edge of the 
distribution tree leave the multicast group, the routers prune that edge from the distribu-
tion tree (i.e., stop forwarding traffic down that edge). If some receiver connected to that 
edge becomes active again and resume their participation, then the router modifies the 
distribution tree and starts forwarding traffic again.

Two widely used forms of distribution trees are source trees and shared trees. A source 
tree is a shortest path tree rooted at the source. Figure 15.1a shows a source tree where a 
host connected to router B is the source. For a different source, the tree will be different. 
The source sends one copy to each neighboring router across the shortest path links. These 
routers replicate it and forward a copy to each of their neighbors. The shortest path prop-
erty optimizes network latency and works well for streaming data. This optimization does 
come with a price, though: The routers must maintain path information for each source. 
In a network that has thousands of sources and thousands of groups, this quickly becomes 
a resource issue for the routers.
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FIGURE 15.1 Two distribution trees for multicast in a network of seven nodes: the thick lines are 
the tree edges (a) a source tree rooted at B and (b) a shared tree with E as RP.
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An alternative is to use shared trees. In a shared tree, a specific router is chosen as the 
rendezvous point (RP), which becomes the root of all spanning trees used for multicasting 
(Figure 15.1b). All routers must forward the group communication traffic from their local 
hosts toward the (RP), which forwards them to the appropriate destinations via a com-
mon shortest path tree rooted at the RP. The overall memory requirement for the routers 
of a network that allows only shared trees is lower. The disadvantages of shared trees are 
primarily twofold: (1) the load on the RP is large and (2) the paths between the source and 
the destination nodes may not be optimal, introducing additional latency (notice the path 
from B to F in Figure 15.1b where E is the RP).

15.3.1 Reverse Path Forwarding

In point-to-point communication, traffic from a source is routed through the network along 
a unique path to the destination. Here, routers do not care about the source address—they 
only care about the destination address. Each router looks up its routing table and forwards 
a single copy of the packet toward a router in the direction of the destination.

In multicast routing, the source sends a packet to an arbitrary group of hosts identified 
by a multicast group address. For each source, the multicast router must be able to dis-
tinguish between upstream (toward the source) and downstream (away from the source) 
links. If there are multiple downstream links, the router replicates the packet and forwards 
the traffic down the appropriate downstream links—which is not necessarily all links. This 
concept of forwarding multicast packets away from the source is called reverse path for-
warding (RPF).

The RPF algorithm that builds a shortest path tree is constructed for each source. 
Whenever a router R receives a multicast packet from the source S on a link L, it checks to 
see if the link L belongs to the shortest path from R to S (which is the reverse path back to 
the source). If this is the case, then the packet is forwarded on all links except L. Otherwise, 
the packet is discarded as a forged or a spurious packet or a redundant one (Figure 15.2). 
This strategy helps avoid the formation of circular paths in the routes.

Multicast backbone (Mbone) is a popular multicast protocol to distribute audio and video 
to group members over the Internet. Mbone first creates an overlay network implemented on 
top of some portions of the Internet that includes the group members. An overlay network 
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FIGURE 15.2 An example of RPF with the source node S: The recipients discard the incoming 
packets represented by the broken arrows.
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is a logical network defined on top of the IP network—the nodes are islands of multicast-
capable subnetworks, and the logical links connecting the nodes are tunnels through which 
multicast messages are forwarded via non-multicast-capable portions of the Internet. The 
multicast routers have the ability to interpret the multicast command, but the unicast rout-
ers are unable to do so—therefore, multicast packets are encapsulated inside unicast packets 
and dispatched along the tunnels. The unicast routers simply forward these packets, but the 
multicast routers interpret them and locally distribute them to the members of the group. 
Each router performs an RPF check on each received packet to select only packets on the 
interface that is the most efficient path back to the source. All other packets are discarded.

15.4 APPLICATION LAYER MULTICAST
While IP multicast is bandwidth efficient and many routers are equipped with the facility 
of IP multicast, one significant impediment is the growing size of the state space that each 
router has to maintain per group. The rapid growth of group-oriented activities is making 
the problem worse. Application layer multicast is an alternative approach that overcomes 
this problem.

Basic application layer multicast works on an overlay network connecting the mem-
bers of the group. Data or messages are replicated and managed at the end hosts instead 
of the routers, and the routers are no more required to maintain group-specific states. 
Application-level multicasts are implemented as a series of point-to-point messages. The 
network only needs to provide the basic stateless, unicast, best-effort delivery. The down-
side is an increase in the consumption of network resources like bandwidth, since the same 
message may be routed multiple times across a link (the replication factor is known as 
stress). Figure 15.3 shows an example. Here, host 0 multicasts a message to hosts 1, 2, and 3. 
In Figure 15.3a, the same message is sent to router A three times (so the stress on the link is 3). 
Figure 15.3b uses a different routing strategy (using the paths 0 A C 2 and 0 A B 1 B D 3), 
which reduces the load on the link from 0 to A and A to B.

The basic scheme is sometimes called the P2P (peer-to-peer) scheme where only the 
peers maintain group-specific information and manage the routing process. An alternative 
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FIGURE 15.3 Two examples of application layer multicast with host 0 as the source. (a) The stress 
on the link from host 0 to router A is 3. (b) The stress on no link exceeds 2.
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is the overlay multicast scheme [AMM+04], where a number of strategically deployed 
proxy nodes are used to back up the hosts. The content is distributed to these proxy serv-
ers that are connected by an overlay network. Akamai [NSS10] uses this approach in their 
content distribution network for video streaming, where surrogate servers maintain copies 
of the content and thus maintain a better quality of service. Various other improvements 
are feasible in the basic application layer multicast scheme. For example, using cross-layer 
communication, hosts may collect information from the routers to improve the efficiency 
of IP multicast by reducing packet duplication.

15.5 ORDERED MULTICASTS
In multicast groups, there are two orthogonal issues: reliability and order. Reliable multi-
cast addresses only the reliability issue by guaranteeing that each member receives every 
message sent out by the other members in spite of process failures. So far, it is silent about 
the order in which these messages are delivered. However, even in basic multicast, many 
applications require a guarantee stronger than atomicity—here, the order of message deliv-
ery becomes important. Even if the underlying communication is reliable, guaranteeing 
the order of message delivery can be far from trivial. One such version requires all mes-
sages to be delivered to every group member in the same total order. For example, a group 
of replicated files cannot be in the same state unless all replicas apply the updates from 
their users in the same order. Other applications may have a weaker ordering requirement.* 
Guaranteeing ordered message delivery in the presence of process crashes (i.e., implement-
ing the reliable version of ordered multicast) is much more challenging than the basic ver-
sions. In this chapter, we will primarily focus on the basic versions of ordered multicasts.

The following are the three main types or orderings that have been studied in the con-
text of ordered multicasts:

 1. Local order multicast (also called single-source FIFO)

 2. Causal order multicast

 3. Total order multicast

Local order multicast: In local order multicast, if a process multicasts two messages in the 
order (m1, m2), then every correct process in the group must deliver m1 before m2. There 
are many applications of local order multicast: One is in the implementation of a DSM 
where the primary copy of each variable is maintained by an exclusive process, and all 
other processes use cached copies of it. Whenever the primary copy is updated, the owner 
of the primary copy multicasts the updates to the holders of the cached copies, and these 
copies are updated in the same order. Other applications include video distribution and 
software distribution.

Causal order multicast: Let m1 and m2 be a pair of messages in a group, such that 
sent(m1) ≺ sent(m2). Then causal order multicast requires that every process in the system 

* Chapter 16 will discuss some of these applications.
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must deliver m1 before m2. Local order multicast trivially satisfies this. Causal order 
 multicast modifies it by imposing delivery orders among causally ordered messages from 
distinct senders too. Here is an example: A group of students scattered across a large cam-
pus are preparing for an upcoming quiz through a shared bulletin board. Someone comes 
up with a question and throws it to the entire group, and whoever knows the answer mul-
ticasts it to the entire group. The delivery of a question to each student must happen before 
the delivery of the corresponding answer, since these are causally related. It will be awk-
ward (and a violation of the rules of causal ordered multicast) if some student receives the 
answer first and then the corresponding question!

Total order multicast: In total order atomic multicast, every member of the group is required 
to deliver all messages sent within the group in identical order. It implies that if every pro-
cess i maintains a queue Q · i (initially empty) to which a message is appended as soon as it 
is delivered, then eventually, for any two distinct processes i and j, Q . i = Q . j. Note that the 
order in which the messages are delivered has no connection with the real time at which 
these messages were sent out.

The underlying abstract concept behind total order multicast is that of a replicated 
state machine. Assume that each client sends its request to a group of identical servers, the 
objective being that if one server crashes then another server will take over. The servers 
have states, and each request from a client modifies the state of a server. For consistency, 
it is essential that all nonfaulty servers remain in the same state after each update. This 
cannot be met without total order multicast. Compared with causal order multicast, total 
order multicast is more restrictive. However, the order in which messages will be delivered 
in a total order multicast need not agree with the causal order.

In real-time environment, one more class of atomic multicast is relevant—it is called 
timed multicast. A Δ-timed multicast is one in which every message sent at time t is deliv-
ered to the each member at or before the time (t + Δ). If a message is not delivered to at 
least one process within that time window, then it should not be delivered to any process 
within that time window. The time may be maintained either by an external observer or by 
the clocks local to the processes. Depending on the choice, different variations of the timed 
multicasts can be defined.

In the presence of omission failures, local order reliable multicast can be implemented 
using Stenning’s protocol or an appropriate window protocol (Chapter 12). So, we will only 
discuss the implementation of the other two types of ordered multicasts. We focus only on 
the basic versions.

15.5.1 Implementing Total Order Multicast

Several implementations of total order multicast exist. Here, we present two different 
implementations.

15.5.1.1 Implementation Using a Sequencer
A designated member S of the group acts as a sequencer process [CM84]. It assigns a unique 
sequence number seq to every message m that it receives and multicasts it to every other 



324   ◾   Distributed Systems: An Algorithmic Approach

member of that group. Each member first sends its message to the sequencer process. 
The variable seq in the sequencer defines the order in which every member will accept the 
messages. After receiving the multicast from the sequencer S, each member accepts the 
messages in the ascending order of seq. Messages received out of order are buffered (assum-
ing that there is available space for it), until the message with the expected number arrives. 
Essentially, the sequencer performs a local order multicast.

{The sequencer S}
define seq: integer {initially seq = 0}
do receive m → multicast (m, seq) to all members;
 seq ≔ seq + 1;
 deliver m
od

One criticism of this simple implementation is that the sequencer process becomes a 
bottleneck. The next implementation illustrates a distributed version that does not use a 
central process as a sequencer.

15.5.1.2 Distributed Implementation
For a distributed implementation of total order multicast, it is tempting to use the real 
time of the individual multicasts for determining the total order. Thus, if three messages 
m1, m2, m3 are multicast at times t1, t2, t3, respectively, and t1 < t2 < t3, then every 
member of the group will deliver the messages in the order m1, m2, m3. The solution 
is feasible in systems where message propagation delays are bounded. In asynchronous 
system, message propagation delays can be arbitrarily large, so messages can reach their 
destinations in any order. As a result, a process that first received m2 has no way of guess-
ing if another message m1 has been sent at an earlier time and is still in transit. This leads 
to the following two-phase protocol for total order multicast, which is similar to the 2PC 
protocol of Section 14.5.

Phase 1: To multicast a message m, a sender sends (m, ts) every member of the group, 
where ts is the send time stamp of the message. Upon receiving it, a member saves it in 
a holdback queue, assigns a receive time stamp ts′ to it, and sends an ack (a, ts′) back 
to the sender.

Phase 2: After the sender receives (a, ts′) from every member in the group, it picks up 
the largest value of ts′. Let ts″ be this value. Then it multicasts a commit message with 
the time stamp ts″ to every member of the group. The recipients subsequently use the 
value of ts″ to determine the delivery order of the messages in its holdback queue.

Figure 15.4 shows an example. Here, p receives three acks with time stamps 3, 4, and 10 
from the members—so p multicasts a commit message with a time stamp 10 that is the 
maximum of these values. Similarly, the commit messages from processes q and r have time 
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stamps 22 and 19, respectively. Therefore, every process will sequentially accept messages 
from the senders in the order (p, r, q).

Why does it work? The argument is straightforward: Every process will eventually receive 
all commit messages, and every process will eventually learn about the unique delivery order 
from the values of ts. To guarantee liveness, let m · 1, m · 2, m · 3,… be the sequence of messages 
currently in the holdback queue of a member p, sorted in the ascending order of the commit 
times. To decide if a message m · i is ready for delivery, member p must ascertain that (1) all 
messages up to m ⋅ (i−1) have been delivered and (2) no commit message with a time stamp ts 
smaller than that of m · i will arrive in the future. Since the logical clocks of every member con-
tinue to increase and every member learns about the values the logical clocks of its peers via 
messages and acks, the second condition is guaranteed at a time when the minimum of all the 
logical clocks exceeds the commit time of the message m · i, assuming each channel to be FIFO.

In the previous implementation, for each message multicast by a member, two addi-
tional messages (ack and commit) are required. Therefore, to implement total order mul-
ticast in a group of size n where each member sends one message, a total number of 3n2 
messages will be required.

15.5.2 Implementing Causal Order Multicast

The implementation of causal order multicast uses vector time stamps (introduced in Chapter 6), 
with a minor modification.* In a group of n members 0, 1, 2,…, (n−1), a  vector clock VC is a 
nonnegative integer vector of length n. The vector clock is event driven. Let VC[i] denote the 
current value of the local vector clock of member i and T[j] denote the vector time stamp asso-
ciated with the incoming message sent by member j. Also, let VCk[i] represent the kth element of 
the vector clock VC[i]. To multicast a message, a member i will increment VCi[i] and append the 
updated VC[i] to the message. If the recipient j decides to accept the message, there it updates 
VC[j] as follows: ∀k: VCk[j] := max(Tk[i], VCk[j]). To decide whether to accept this message,  
the recipient has to decide the causal order of this message with respect to other messages. In 
Figure 15.5, send(m1)≺send(m2) so P2 should deliver these messages in that order. But m2 from 
P1 arrived at P2 earlier than m1, so P2 must delay the delivery of m2 until m1 from P0 arrives 
(and P2 delivers it). But the important question is how will P2 decide that it cannot deliver m2 

* The vector time stamp scheme is often fine-tuned to satisfy specific requirements.
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FIGURE 15.4 Every process will deliver the messages from the senders in the order (p, r, q).
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as soon as it receives m2—it has no knowledge that m1 will arrive in the future? The following 
two observations form the basis of member i’s decision to deliver a message from process j:

Observation 1: Member i must have received and delivered all previous messages sent by 
member j. So Tj[j] = VCj[i] + 1.

Observation 2: For every other member k(k ≠ j), member i must also have received all 
messages sent by k, which were received by member j before it sent the current mes-
sage. This means ∀k ≠ j:Tk[j] ≤ VCk[i].

We now revisit Figure 15.5 and focus on the message m2 from process P1 to process P2. 
Here, T[1]=1,1,0 and VC[2]=0,0,0. So the first requirement is satisfied, but the second 
requirement is not, since T0[1] > VC0[2]. The missing link is as follows: Process 2 has not 
received the first message m1 from process 0, but process 1 has already received it prior 
to sending the current message. Process 2 therefore saves this message in a holdback 
queue, accepts the next incoming message from process 0 and delivers it (which updates its 
VC to 1, 0, 0), and then delivers the pending message m2. The algorithm for causal order 
multicast can thus be summarized as follows:

Send: Sender j increments VCj[j] and appends T = VC[j] to message m.

Receive: To deliver m, receiver i waits until the conditions (1) Tj[j] = VCj[i] + 1 and (2) 
∀k ≠ j:Tk[j] ≤ VCk[i] hold. Thereafter, the receiver delivers m and updates VC[i] as fol-
lows: ∀k:0 ≤ k ≤ n−1::VCk[i]=max(Tk[j], VCk[i]).

15.6 RELIABLE MULTICAST
Compared to basic multicasts, the additional requirement of reliable multicasts is that 
only correct processes will receive the messages from all correct processes in the group. 
Multicasts by faulty processes* will be received either by every correct process or by 

* These processes might have failed after the multicast is initiated.
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FIGURE 15.5 An example illustrating the delivery of messages per causal order: P2 postpones the 
delivery of m2 until it receives m1.
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none at all. Let n processes {0, 1, 2,…, n−1} form a closed group and assume that multicasts 
are implemented as a sequence of unicasts. An implementation that survives the crash 
failure of members is described later. Note that we consider the communication links to 
be reliable.

Sender’s program Receiver’s program
i ≔ 0; if m is a new message →
do i ≠ n→  accept it;
 send message m to i;  multicast m to every member;
 i:=i+1 [] m is not a new message → discard m
od  fi

If the sender crashes before sending a single message, then no one receives it, and ato-
micity trivially holds. Otherwise, if the sender crashes at the middle of the multicast, 
then the receivers carry out the unfinished work of the sender by forwarding each 
newly received message to every other member of the group. This satisfies the require-
ment of atomic multicast, although at the expense of a large number of messages, the 
complexity of which is O(n2). The message complexity can be reduced if the maximum 
number t of faulty processes is known. For example, if t = 1, then after the initiator i 
sends out one round of messages, it is adequate for one more process j to send a second 
round of messages. Success is guaranteed since both i and j cannot crash—so every 
nonfaulty process must receive a copy of the message. The maximum number of mes-
sages is limited to 2n.

15.6.1 Scalable Reliable Multicast

Practical multicast systems deal not only with process crashes but also with omission 
failures and network partitions. IP multicast or application layer multicast provides no 
guarantee for reliability. Several issues must be addressed in such systems: (1) detection 
of message loss and types of feedback (ack, nack, etc.) to be used, (2) sending the feed-
back to the sender, (3) retransmission of lost or corrupted messages, and (4) congestion 
control and scalability. To add to the complications, the composition of the group may 
change at any time. An implementation of reliable multicast for large-scale systems is 
addressed here.

Let m[0] through m[k−1] be a sequence of k messages that a sender wants to multi-
cast to its group of size n. We first consider a minimal program for reliable multicast 
that works on bounded delay channels and rules out the failure of the sender or change 
of group membership. After each basic multicast, the sender expects (n − 1) acks from 
the group members within a time-out period. If this does not arrive, then the initiator 
retransmits the message using another instance of basic multicast. When the sender 
receives (n − 1) acks, it begins the multicast of the next message. A closer look will reveal 
that this is essentially an implementation of reliable local order multicast in the presence 
of omission failures.



328   ◾   Distributed Systems: An Algorithmic Approach

Program Reliable Multicast
{Sender’s program}
define: seq, count : integer
initially seq = 0; count = 0; {counts the number of ack’s};
do (seq ≠ k − 1)∧(count = 0)→ (basic) multicast (m[seq],seq)
[] ack received → count:=count+1
[] (seq ≠ k − 1)∧(count ≠ n − 1)∧timeout→ (basic) multicast (m[seq],seq)
[] (seq ≠ k − 1)∧(count = n − 1)→ seq: = seq + 1;count:= 0;
od

{Receiver’s program}
define r: integer; {initially r = 0}
do seq = r → deliver m[seq];send ack; r:=r + 1
[]seq ≠ r → send ack for the last received message
od

When n is large, the number of acks is a clear bottleneck in the scalability of the previous 
scheme. If omission failures are rare, then a more scalable scheme is as follows: Receivers 
will only report the nonreceipt of messages using nack, instead of using positive acks for 
reporting the receipt of messages. This triggers selective point-to-point retransmission—
and either the sender or another member that received the message will forward the miss-
ing message. Members will eventually delete the received messages from their local buffers 
after a time-out period. The reduction of acks is the underlying principle of scalable reliable 
multicasts (SRMs).

Floyd et al.’s [FJM+97] idea takes the principle one step further by allowing negative 
feedback to be combined or suppressed. If several members of a group fail to receive a 
message, then each such member will apparently multicast its nack to all the other mem-
bers. However, the algorithm requires each such member to wait for a random period 
of time before sending its nack. If in the mean time one such member notices a nack 
sent by another member, then it suppresses the sending of its own nack. It is sufficient 
(and in fact, ideal) for the sender to receive only one nack for a given missing message, 
following which it multicasts the missing message to all recipients. In practice, Floyd’s 
scheme reduces the number of nacks sent back to the sender for each missing message, 
although it is rarely reduced to a single nack. However, reductions in the scale of redun-
dant retransmissions save bandwidth. Finally, upon receiving a nack for a missing mes-
sage, another member may supply that message from its local cache, thus saving the 
overhead of a system-wide retransmission. The proper orchestration of these techniques 
helps in drastically reducing the number of retransmitted messages, which saves band-
width and improves scalability.

15.6.2 Reliable Ordered Multicast

Some reliable versions of ordered multicasts can be implemented by replacing each basic 
multicast component of the implementation by its reliable version. Interestingly, total order 
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reliable multicasts cannot be implemented on an asynchronous system in the presence of 
crash failures. The following theorem explains why it is so.

Theorem 15.1

In an asynchronous distributed system, total order multicasts cannot be implemented 
when even a single process crashes.

Proof: If we could implement total order multicasts in the presence of crash failures, 
then we could as well solve the asynchronous consensus problem in the following 
manner: Let each correct process enter the messages received by it in a local queue. 
If every correct process picks the head of the queue as its final decision, then consen-
sus is reached. But we already know from Theorem 13.1 that the consensus problem 
cannot be solved in an asynchronous system even if a single process crashes. So it is 
impossible to implement total order multicasts in an asynchronous system in the pres-
ence of a crash failure. ◾

15.7 OPEN GROUPS
Open groups allow members to spontaneously join and leave. Changing group sizes adds a 
new twist to the problems of group communication and needs a precise specification of the 
requirements. Consider a group g that initially consists of four members {0, 1, 2, 3}. Assume 
that each member knows the current membership of this group. We call this a view of the 
group and represent it as V(g)={0, 1, 2}.

When members do not have identical views, problems can arise. Such situations can occur 
due to the local nature of the join or leave operations and the latency of information propa-
gation. As a simple example, suppose the members of the group {0, 1, 2, 3} have been given 
the responsibility of sending out emails to 144 persons. Initially, every member had the view 
{0, 1, 2, 3}, so they decided that each would send out 144/4 = 36 emails to equally share the load. 
Due to some reason, member 3 left the group and only 2 knew about this, while others were 
not updated about 3’s departure. Therefore, the views of the remaining three members will be 
as follows:

 V g( ) { , , , }= 0 1 2 3 0for member

 V g( ) { , , , }= 0 1 2 3 for member 1

 V g( ) { , , }= 0 1 2 for member 2

As a result, members 0 and 1 will send out emails 0–35 and 36–71 (the first and the second 
quarter of the task), member 2 will send out 97–144 (the last one-third of the task), and the 
emails 72–96 will never be sent out!
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Membership service
A basic group membership service deals with the following tasks:

 1. Handles the join and leave operations of members

 2. Propagates the latest view of the group to the members

 3. Detects failures

The second component requires inputs from the first and the third components. Thus, in 
addition to the voluntary join and leave operations, group compositions can change due to 
the involuntary or unannounced departure (i.e., crash) of members or network partitions. 
The view of a group is extremely relevant before a member executes an action. The mem-
bership service propagates view changes in identical order to all the members. As an example, 
let V0(g)={0, 1, 2, 3} be the initial view. Assume that members 1 and 2 leave the group, and 
member 4 joins the group concurrently. The membership service, upon detection of these 
events, serializes the interim views and installs them at the various members—this enables 
all processes observe the view changes in the same order. There are several feasible serializa-
tions (which may depend on how and when joins and leaves were detected) in this case, such 
as the following:

{0, 1, 2, 3}, {0, 1, 3}, {0, 3, 4}

{0, 1, 2, 3}, {0, 2, 3}, {0, 3}, {0, 3, 4}

{0, 1, 2, 3}, {0, 3}, {0, 3, 4}

Views are propagated just like messages, so processes send and receive messages in specific 
views. This simplifies the specification of the semantics of multicast in open groups and 
the development of application programs. Examples of message sequences for two different 
members are as follows:

{Process 0}: V0(g);
    send m1, … ;
 V1(g);
  send m2, send m3, receive m6;
 V2(g);

{Process 1}: V0(g);
  send m4, send m5, receive m1;
 V1(g);
  receive m2, send m6;
 V2(g);

where, V0(g)={0, 1, 2, 3}, V1(g)={0, 1, 3}, V2(g)={0, 3, 4}

Communication actions that take place between the views Vi(g) and Vi+1(g) are said to have 
taken place in view Vi(g). The switching of views does not happen instantaneously across 
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the entire network; rather, views are eventually delivered to all nonfaulty members. The 
following two properties hold for view delivery in open groups:

Property 1: Let i ∈ V(g). If a member j joins group g and thereafter continues its mem-
bership in g, then eventually j appears in all views delivered by process i.

Property 2: Let i, j ∈ V(g). If member j permanently leaves group g, then eventually j is 
excluded from all views delivered by process i.

15.7.1 View-Synchronous Group Communication

View-synchronous group communication (also known as virtual synchrony) presents to 
each processor a consistent total order of views and defines how messages will be delivered 
to the members with respect to these views. Since crashes change group composition and 
process views, the specifications of view-synchronous group communication takes crashes 
into account. Let a message m be multicast by a group member, and before it is delivered to 
the current members, a new member joins the group. Will the message m be delivered to the 
new member? Or consider the distribution of a secret key to the members of a group. While 
the distribution was in progress, a member left the group. Should that member receive the 
key? There perhaps can be many policies. View synchrony specifies one such policy. The guid-
ing principle of view-synchronous group communication is that with respect to each message, 
all correct processes must have the same view, that is, if a message is sent in a view V(g), then 
it should be received in the same view (Figure 15.6). Thus, there should be basic agreement 
about the next view as well as the set of messages delivered in the current view. This translates 
to a sequentially consistent (see Chapter 16) interface for the members of the group.

In the presence of crash failures, there are three key requirements of view-synchronous 
group communication:

Agreement: If a member k delivers a message m in view Vi(g) before delivering the next 
view Vi+1(g), then every nonfaulty member j ∈ Vi(g) ∩ Vi+1(g) must deliver m before 
delivering Vi+1(g).

Integrity: If a member j delivers a view Vi(g), then Vi(g) must include j.

Validity: If a member k delivers a message m in view Vi(g) and another member j ∈ Vi(g) 
does not deliver that message m, then the next view Vi+1(g) delivered by k must exclude j.
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V0(g)

V0(g)

V1(g)

V1(g)

V1(g)

V2(g)

V2(g)

V2(g)

m1

m1

m2
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m3

0

1

2

FIGURE 15.6 Visualizing view-synchronous group communication.
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Consider the example in Figure 15.7. Here, process 1 sends out a message m and then 
crashes, so the group view eventually changes from {0, 1, 2, 3} to {0, 2, 3}. How will the 
surviving processes handle this message? Here are three possibilities:

Possibility 1: No one delivers m, but each delivers the new view {0, 2, 3}.

Possibility 2: Processes 0, 2, 3 deliver m and then deliver the new view {0, 2, 3}.

Possibility 3: Processes 2, 3 deliver m and then deliver the new view {0, 2, 3}, but process 0 
first delivers the view {0, 2, 3} and then delivers m.

Of these three possibilities, 1 and 2 are acceptable, but 3 is not—since it violates the agree-
ment criteria of view-synchronous communication.

15.8 OVERVIEW OF TRANSIS
Danny Dolev of Hebrew University of Jerusalem directed the project Transis. Its goal 
was to support various forms of group communication. The multicast communication 
layer of Transis facilitates the development of fault-tolerant applications in a network 
of machines. Transis is derived from the earlier work in the ISIS project undertaken at 
Cornell University. Transis supports most of the features supported by ISIS. Among sev-
eral enhancements over ISIS, Transis takes advantage of the multicast facility available in 
the routers, thus maintaining a high communication bandwidth. A message addressed to 
a group is sent only once. Atomicity of multicasts is guaranteed and the desired message 
delivery order is maintained, whereas message losses and transient network failures are 
transparent. Reliable communication is based on the Trans protocol devised originally by 
Melliar-Smith et al. Trans piggybacks acks (both positive and negative) with multicast 
messages. All messages and acks contain a progressively increasing sequence number that 
starts from 0. Message losses may be caused due to hardware faults, or buffer overflows, 
or (sometimes) due to the inability to retrieve messages at a high speed from the net-
work. Each ack is sent only once, and the acks from other processes form a causal chain, 
from which the loss of messages can be deduced. Consider a group consisting of processes 

V(g) = {0, 1, 2, 3} V(g) = {0, 2, 3}

m

m

m

0

1
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FIGURE 15.7 An unacceptable schedule of message delivery in a group of changing size.
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P,Q,R,S,… . Let process P multicast a sequence of messages P0,P1,P2,… to the group mem-
bers, and let pk denote the ack of the message Pk. If piQj denotes the ack pi piggybacked on 
the message Qj, then the sequence of messages P0,P1,P2,Q0,p2Q1,Q2,q3R0… received by a 
member of the group will reveal to that member that it did not receive message Q3 so far. 
It will send a nack for Q3 requesting its retransmission. In response to this, another group 
member that has Q3 in its buffer can retransmit Q3.

Transis handles network partitioning caused by communication failures, but guar-
antees that virtual synchrony is maintained within each partition. After the connec-
tivity is restored, virtual synchrony is eventually restored in the entire system. Group 
communication systems developed prior to Transis (often called first-generation sys-
tems) made no guarantees when a partition occurred—in most cases, only the  primary 
component was operational. Transis provides four major modes of multicast commu-
nication. These are the following:

Single-source FIFO: If a process multicasts two messages in the order (m1, m2), then 
every correct process in the group must deliver m1 before m2.

Causal mode: Messages that are causally related are delivered to the members according 
to the causal order.

Agreed mode: Messages are delivered in the same total order at all processes. It is a 
special version of total order communication mode with the added requirement that 
message delivery order has to be consistent with the causal order.

Safe mode: Messages are delivered according to the agreed mode, with the additional 
constraint that all other group members’ machines must confirm the receipt of the 
message. This is possible only after the lower levels of the system have received acks 
from all the destination machines. Safe mode guarantees that (1) if a safe message m 
reaches a process P in a given configuration, then P will deliver that message unless 
it crashes and (2) every other message is ordered relative to a safe message. When a 
network partition occurs, some members deliver a message and some do not. The 
first guarantee allows a process to know for certain who has delivered a safe message 
(or crashed). The second guarantee means that if a safe message m was multicast and 
delivered in a certain configuration, then any message will be delivered by all pro-
cesses either before m or after m. Of the three modes of communication, the causal 
mode of communication is the fastest, and the safe mode is the slowest, since it has to 
explicitly wait for all acks.

The concept of virtual synchrony, when extended to a partitioned environment is known as 
extended virtual synchrony. When a process moves to a different partition, it is treated as a 
failed process by its fellow processes in the previous configuration. One requirement is fail-
ure atomicity—if two processes proceed together from one configuration to the next, then 
they deliver an identical set of messages. An example of a safe message delivery in a parti-
tioned environment is illustrated in Figure 15.8. Assume that A was sending a safe message 
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m to the group of three members {A, B, C}, and the configuration partitioned from {A, B, C} 
→ {A, B}, {C}. In case (a), all but C sent ack to A. In order to deliver m, the members A and 
B must receive the new view {A, B} first—this is a confirmation that only A and B are cur-
rently in the partition and the members should not wait for the ack from C [VES99]. In case 
(b), C sent the ack and also received a copy of the ack sent out by A and B just before the 
partition occurred. Now, C can deliver m before receiving the new view {C}. Otherwise, if 
it receives the new view {C}, then C can ignore m as a spurious message.

Process groups are dynamic. A member may voluntarily leave a group or lose its 
membership following a crash. In case of a partition, each component continues to oper-
ate separately, but each process identifies the processes in the other partition to have 
failed. The application is notified about this change in the group membership. To keep 
track of membership changes, ISIS used an approximate failure detector that relied on 
time-out: A process that fails to respond within the time-out period is presumed to be 
faulty and messages directed toward it are discarded. In contrast, Transis presumes that 
a failed machine can potentially rejoin the group later and need not give up.

15.9 CONCLUDING REMARKS
Since group-oriented activities have significantly increased in commerce and academia, the 
scalability and reliability of group communication services are major issues. Causal order 
multicasts using vector time stamps suffer from poor scalability. The situation is equally 
bad for total order multicasts too, unless a separate sequencer process is used. However, in 
that case, the sequencer itself may be a bottleneck. Practical systems like Transis achieved 
scalability using hardware facilities in the router, piggybacking acks, and using a combina-
tion of positive and negative acknowledgments to recover missing messages.

15.10 BIBLIOGRAPHIC NOTES
The V system by Cheriton and Zwaenepoel [CZ85] was the first to support for process 
groups. Chang and Maxemchuck [CM84] presented the algorithm for reliable atomic mul-
ticast. Some early implementations of group communication primitives can be found in the 
reports of the ISIS project [B93]. All ISIS publications are listed in http://www.cs.cornell.
edu/Info/Projects/ISIS/ISISpapers.html. IP multicast was developed by Deering, a student 
of Cheriton as a part of the V system [DC90]. Deering and Cheriton organized a large-scale 
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FIGURE 15.8 Two different scenarios in the delivery of a safe message. (a) All but C sent ack to A, 
(b) C sent ack to A, and also received a copy of the acks sent by A and B before the partition occurred.
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demonstration during an audiocast at the 1992 IETF meeting. Mbone was a follow-up of IP 
multicast. Andreev et al. [AMM+04] proposed the overlay multicast scheme. Nygren et al. 
[NSS10] described the Akamai approach to content distribution on the Internet. The total 
order multicast algorithm described here is the same as the ABCAST algorithm of ISIS. A 
few other implementations of ordered multicasts have been proposed by Garcia-Molina 
and Spauster [GS91] and by Melliar-Smith et al. [MMA90]. The causal order multicast 
algorithm follows the work by Birman et al. [BSP91]. Birman and Joseph [BJ87] introduced 
view synchrony (originally known as virtual synchrony) in the context of the ISIS project. 
Floyd et al. [FJM+97] developed the SRM protocol. The 1996 issue of Communications of 
the ACM describes several group communication systems like Transis, Totem, and Horus. 
Melliar-Smith and Moser [MM93] developed the Trans protocol that was later used in 
Transis. The reports on the Transis project are available from http://www.cs.huji.ac.il/labs/
transis/publications.html. The example highlighting the delivery of safe message while the 
network partitions is described in detail from the Transis website.

EXERCISES
15.1 In a group, there are eight members, of which at most one can crash at any time. 

You have no idea about which process can crash. If the topology is a completely 
connected network, then in the worst case, what is the smallest number of messages 
needed to guarantee reliable atomic multicast from a given process to the entire 
group? What is the rationale behind your decision? How will you modify your 
answer of up to four members can crash at any time? 
(Hint: The worst case corresponds to the situation when no process fails, but no one 
knows about it.)

15.2 Two processes 0 and 1 form a group and want to create a shared bulletin board, so they 
decide to implement causal order atomic multicast using vector clocks. At a certain 
point, process 1’s local vector clock is (0, 2) and it received a message m (from pro-
cess 0) stamped with vector clock value of (2, 1). Which one of the following steps will 
process 1 take?
a. Accept m now.
b. Accept m only after receiving a message with VC = (1, 1).
c. Accept m only after receiving two messages with VC = (1, 0) (1, 1).
d. Accept m only after receiving three messages with VC = (1, 0) (1, 1) (2, 0).
e. None of the above is true.

15.3 Three processes 0, 1, 2 of a group communicate with one another, and the require-
ment is causal order multicast. A message from process 0 has a vector time stamp 
(1, 2, 0), and it reaches node 2 when its local vector clock is (0, 1, 2).
a. Draw a diagram reconstructing the exchange of all the messages in the group.
b. Will the message be accepted by process 2? Explain.

15.4 Consider an election in a state. The citizens cast their votes at the individual polling cen-
ters. At the end of the day when the poll closes, counting begins. Each count recorded at 
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a center is multicast to all the other centers, so that all of them exactly know the latest 
count at any time when the counting is in progress. The interconnection topology of 
the network connecting the polling centers is a completely connected graph.
a. Assume that at any time failures can bring down some of the communication 

lines without creating a partition. What kind of multicast will guarantee that all 
centers are able to record every vote?

b. Assume that communication failure partitioned the network for an hour. 
Apparently, the counting must stop. What would you recommend so that the 
progress of counting is not affected even if the network temporarily partitions?

15.5 Consider a multiparty game of quiz involving five teams. Each team poses a ques-
tion and a member of another team has to answer it. The team that answers the 
question first scores a point. If no team can answer a question within 30 s, then no 
one scores any point. The clocks are synchronized, so who answered first is decided 
by the time when the reply was posted. The teams can pose questions at any time 
and in no particular order. What kind of multicast is appropriate here?

15.6 Different applications of group communication demand different types of ordered 
multicast. Consider the problem of maintaining a shared calendar of appointments 
by four different clerks, each having a separate copy of the calendar. A clerk will 
make an entry into his or her own copy of the shared calendar and send it to the 
other three clerks. The requirement is that after any finite sequence of updates, all 
four copies of the calendars must be identical and meaningful (thus, if you first 
make an appointment at 10 a.m. on January 3, 2013, with one clerk and then change 
it to 9 a.m. on January 4, 2013, with another clerk, then the last entry will prevail). 
In case of conflicts (like two persons trying to make appointments for the same 
time slot, the second one will be rejected). What kind of ordered multicast will you 
recommend? Explain your answer.

15.7 The members of a group use view-synchronous communication to communicate 
with one another. Initially, there are four processes 0, 1, 2, 3. Process 0 sent a mes-
sage m in view (0, 1, 2, 3). Processes 0, 1, and 2 delivered the message m, but process 3 
did not. Is this an acceptable behavior? Justify your answer.

15.8 Bob is the president of the Milky Way club of sky watchers and also the president of 
the Himalayan Hikers club of nature lovers. From time to time, Bob will send out 
messages to the members of these groups, and these messages will be delivered in 
the FIFO order among the group members.

Now assume that some members of the Milky Way club also join the Himalayan 
Hikers club; as a result, the two groups overlapped. Argue why the FIFO-ordered 
multicast algorithm may not work for the members who belong to both clubs. Also, 
suggest modifications that will preserve the FIFO order of message delivery among 
members of both clubs, including those in the intersection.

15.9 Consider two groups A and B each containing a set of members. Assume that within 
each group, total order multicast and causal order multicast have already been 
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implemented. Assume that some members of group A became members of group 
B too. Using the existing implementations
a. Will causal order multicast correctly work if the groups overlap?
b. Will total order multicast correctly work if the groups overlap?
Briefly justify your answer.

15.10 (Programming exercise) Implementing totally ordered multicast
Implement a distributed chat program using a programming language of your 

choice. When a user types in a message, it should show up at all users. Further, all 
users should see all messages in the same order. Your program should use totally 
ordered multicast algorithm based on a sequencer process. To multicast a message, 
a user p sends the message to the sequencer. The sequencer assigns a number to the 
message, returns this number to p, and sends the message to all machines in the 
group together with the sequence number.

Use process 0 as the sequencer. You may or may not allow the sequencer to be a 
user in the chat. You will need to implement a holdback queue at each user.

15.11 (Programming exercise) Implementing casually ordered multicast
Implement causal order broadcast in a group of 16 processes. You will write a 

program for a client class. This class will store the name of all the clients including its 
own. This client should also provide the interface including following two functions:

public boolean SendMessage(String strMessage)
This method should send the message to all clients.

public String ReceiveMessage()
This method should return the next message to the client from a pool of messages 
satisfying the causal order requirement. Remember that the underlying platform is 
non-FIFO.

public void AddClient(String strClientName) -
This method should add another client to this client’s list.

For interclient communication, use the SimulateSocket.class that simulates non-
FIFO channels on a reliable network and will garble the message order arbitrarily. 
The SimulateSocket.class has the following interface:

public SimulateSocket(String strClientName)
This function opens up a new communication channel for the calling client.

public int send(Object objSend, String ReceiverClientName)
This function sends required object to the recipient client.

public Object receive()
This function fetches the next message available for calling client. Remember, this 
message need not be in FIFO order.

Specify a distributed chat simulation scenario (e.g., label a message from A to B as 
(A, B) and its response as Re[1]: (A, B), the response to Re[1]: (A, B) as Re[2]: (A, B)). 
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All messages are sent to the entire group—there are no one-to-one messages. 
Thus, Re[3]: (A, B) is causally ordered before Re[5]: (A, B), but Re[12]: (A, B) is not 
causally ordered before Re[2]: (B, C). Your experiment should let the clients run 
chats with titles as earlier. At the end of say 32 messages sent by each process, stop 
the chat and examine the order of message delivery at each process, and observe 
that the causal order is not violated. Provide a copy of the client class that you have 
written along with the test program that validates your client class. Also, prepare a 
small document that will describe why and how your program works.
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C h a p t e r  16

Replicated Data Management

16.1 INTRODUCTION
Data replication is an age-old technique for tolerating faults, increasing data availability, 
and reducing latency in data access. With online activities taking over our lives, our critical 
data, both personal and professional, are being increasingly stored in data centers some-
where in the globe. Such data are replicated across multiple data centers either proactively 
or reactively, so that even when some of the copies are lost due to a crash or become inacces-
sible due to a network partition, our data still remain intact and accessible. Cached copies of 
downloaded data on our personal devices enable us to use them even if the network connec-
tivity is absent. Apart from data backup, replication is widely used in the implementation of 
distributed shared memory (DSM), distributed file systems, and bulletin boards.

In addition to fault tolerance, replication reduces access latency. DNS servers at the 
upper levels are highly replicated—without this, IP address lookup will be unacceptably 
slow. Accordingly, in large systems (like P2P systems and grids), how many replicas will 
be required to bring down the latency of access to an acceptable level and where to place 
them are interesting questions. Another major problem in replication management is that 
of replica update. The problem does not exist if the data are read-only, which is true for 
program codes or immutable data. When a replica is updated, every other copy of that data 
has to be eventually updated to maintain coherence. However, due to the finite computa-
tion speed of processors and the network latencies involved in updating geographically 
dispersed copies, it is possible that even after one copy has been updated, users of the other 
copies still access the old version. What inconsistencies are permissible and how coherence 
can be restored are important issues in replicated data management.

16.1.1 Reliability versus Availability

Two primary motivations behind data replication are reliability and availability. Data rep-
licated in the cloud not only serve as a backup and safeguard against failures but also 
facilitate anytime anywhere availability through a simple browser. In the WWW, proxy 
servers provide service when the main server becomes overloaded. All these illustrate how 
replication can improve data or service availability. There may be cases in which the service 
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provided by a proxy server is not as efficient as the service provided by the main server—
but certainly, it is better than having no service at all. This is an example of graceful deg-
radation. When all servers are up and running and client accesses are uniform, the quality 
of service goes up since the server loads are balanced. In mobile terminals and handheld 
devices, disconnected modes of operation are important, and replication of data or service 
offers partition tolerance and minimizes the disruption of service. Redundant array of 
inexpensive disks (RAID) is another example of providing reliability and improving avail-
ability through replication.

 Reliability and availability address two orthogonal issues. A server that is reliable but 
rarely available serves no purpose. Similarly, a server that is available but frequently mal-
functions or supplies incorrect or stale data causes headache for all.

Consider two users, Alice and Bob, updating a shared file F. There may be a single copy 
of F, or Alice and Bob each may want to maintain a private replica of F (Figure 16.1). Each 
user’s life is as follows:

{Alice and Bob sharing a file F}
do true →
 read F;
 modify F;
 write F
od

Depending on how the file is maintained, the write operation (1) will update a central copy 
of F that is shared by both (2) or will update the local copies of F separately maintained 
by Alice and Bob. In either case, ideally, Alice’s updates must reach Bob before he initiates 
the read operation, and vice versa. However, with separate local replicas, this may not be 
possible due to channel latencies, so Bob may either read a stale copy or postpone reading 
until the update arrives. What is an acceptable semantics of sharing F? This will depend on 
data consistency models.

16.2 ARCHITECTURE OF REPLICATED DATA MANAGEMENT
Ideally, replicated data management must be transparent. Transparency implies that 
users have the illusion of using a single copy of the data or the object—even if multiple 
copies of a shared data exist or replicated servers provide a specific service, the clients 
should not have any knowledge of which replica is supplying the data or which server is 

Alice Bob

F

(a) Alice Bob

F΄ F˝

(b)

FIGURE 16.1 Two different ways of sharing a file F: (a) Users sharing a single copy and (b) each 
user has a local replica of the file.
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providing the service. It is conceptually reassuring for the clients to believe in the existence 
of a single server that is highly available and trustworthy, although in real life, different 
replicas may take turns to create the illusion of a single reliable copy of data or server. 
Although ideal replication transparency can be rarely achieved, approximating replication 
transparency is one of the architectural goals of replicated data management.

16.2.1 Passive versus Active Replication

For maintaining replication transparency, two different architectural models are widely 
used: passive replication and active replication. In passive replication, every client communi-
cates with a single replica called the primary. In addition to the primary, one or more replicas 
are used as backup copies. Figure 16.2 illustrates this. If the primary is up and running, it 
provides the desired service. If the request from a client does not modify the state of the 
server, no further action is necessary. If, however, client actions modify the server state, to 
keep the states of the backup servers consistent, the primary performs an atomic multicast 
of the updates to the backup servers, before sending the response to the client. If the primary 
crashes, one of the backup servers is elected as the new primary.

The primary-backup replication architecture satisfies the following specifications:

 1. At most, one replica can be the primary server at any time.

 2. Each client maintains a variable L (leader) that specifies the replica to which it will 
send requests. Requests are queued at the primary server.

 3. Backup servers ignore client requests.

There may be periods of time when there is no primary server—this happens during a 
changeover after the primary server has crashed, and a backup server is yet to be desig-
nated as the new primary. This period is called the failover time. When repairs are ignored, 
the primary-backup approach implements a service that can tolerate a bounded number of 
faults over the lifetime of the service. Here, unless specified otherwise, a failure implies a 
server crash. Since the primary server returns a response to the client after completing an 
atomic multicast, when a client receives a response, it is assured that each nonfaulty replica 

Primary
server

Backup
server

Backup
server

Backup
server

Client

Client

Client

Client

FIGURE 16.2 Passive replication of servers.
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has received the update. The primary server periodically broadcasts heartbeat messages to 
the backups. If a backup server fails to receive this message within a specific window of 
time, it concludes that the primary has crashed and initiates an election. The new leader 
takes over as the new primary and notifies the clients. Figure 16.3 illustrates the basic steps 
of the primary-backup protocol.

To maintain replication transparency, the earlier switchover must be instantaneous. But 
in real life, this may not be true. Consider the following description of the life of a client:

do request for service → receive response from the server
 [] timeout → retransmit the request to the server
od

If due to the crash of the primary the client does not receive a response within a time-out 
period, the request for service is retransmitted. In fact, multiple retransmissions may be 
necessary, until a backup server becomes the new primary server. This happens during the 
failover time. An important question is: If at most m servers can crash, then what are the 
smallest possible values of the degree of replication and the failover time?

At least (m + 1) replicas are sufficient to tolerate the crash of m servers, since to pro-
vide service, it is sufficient to have only one server up and running. From Figure 16.3, the 
smallest failover time is (τ + 2δ + T) where τ is the interval between the two consecutive 
heartbeat messages, T is the election time, and δ is the maximum message propagation 
delay between a client and a backup server. This corresponds to the case when the pri-
mary crashes immediately after sending a heartbeat message and an update message to the 
backup servers.

An alternative to passive replication is active replication. Here, each of the n clients 
 communicates with a group of k(1 < k ≤ n) servers (also called replica managers). Unlike the 
 primary-backup model, these servers do not have any master–slave relationship among 
them. Figure 16.4 shows a bulletin board shared by a group of members. Each member i uses 
her local copy Bi of the bulletin board. Whenever a member posts an update, her local copy 
is updated, and the update is propagated to each of the servers using total order multicast 
(so that eventually all copies of the bulletin board become identical). By combining the output 
of the servers in this ensemble, one can obtain the output of the fault-tolerant state machine.

Client

Primary

Backup ? Election

Tτ δ

Crash
Request

UpdateHeartbeat

Notification

FIGURE 16.3 An illustration of the primary-backup protocol. The broken lines represent the 
heartbeat messages.
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16.2.2 Fault-Tolerant State Machines

Client–server-based architecture is widely used in the implementation of distributed sys-
tems. A server can be viewed as a deterministic state machine that executes client actions 
in some sequence. The state machine has a current state; it executes a step by executing an 
input command from the client, which produces an output and a new state. As an exam-
ple, consider a distributed banking system with the tellers as clients. The state of the state 
machine consists of the account balances of all users. A deposit will change the state of 
the state machine producing as output the old and the new balances. When implemented 
as a single server, the failure of that server can completely halt the banking system. To 
implement a fault-tolerant state machine, we therefore use a collection of servers, each one 
independently implementing the state machine. When started from the same initial state, 
in spite of the failure of a fraction of the servers, all nonfaulty servers will produce the 
same sequences of states and outputs. A client issuing a command can then use the output 
generated by any nonfaulty server. The replica coordination problem can be reduced to the 
consensus problem, since all state machines have to agree to the choice of the next request 
that will be used to update its state.

The degree of replication k will depend on the nature and the extent of the failure. In 
[Sch90], Schneider presented a theory of fault-tolerant state machines, and it captures the 
essence of maintaining a fault-tolerant service via active replication. Central to this theory 
are reliable atomic multicasts (Chapter 15). The following two requirements must be satis-
fied by any implementation of a fault-tolerant state machine:

Agreement: Every correct replica receives all the requests.

Order: Every correct replica receives the requests in the same order.
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FIGURE 16.4 An example of active replication with n = 4 clients and k = 4 servers. Each client’s 
message is multicast to every other server.
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The agreement part is solved using the reliable atomic multicast protocol of Section 15.2. 
The implementation of the order part demands that this be further strengthened to total 
order reliable multicast. However, no deterministic solution is feasible on asynchronous 
distributed systems (since it will disprove the FLP impossibility result; see Theorem 15.1), 
so a synchronous model must be used.

With at most m faulty replicas, at least (m + 1) replicas are adequate since the faulty pro-
cesses produce correct outputs until they fail. To read a value, a client’s machine queries the 
servers one after another, and the first response that it receives is the desired value.

If instead the failures were byzantine, then to compensate for the erroneous behavior of 
faulty processes, at least (2m + 1) replicas would be required, so that the faulty processes 
become a minority, and the bad values can be voted out using a simple majority. However, 
this assumes that all correct replicas have identical values after every multicast, and with 
only (2m + 1) replicas, this guarantee cannot be provided. To guarantee that all correct rep-
licas are updated to identical values after each multicast in the presence of m byzantine fail-
ures, one of the protocols from Section 13.3 should be used. If the oral message algorithm is 
used, then at least (3m + 1) replicas will be required. The order part can be satisfied by modi-
fying the total order multicast protocols of Section 15.5.1 so that it deals with faulty replicas.

In most implementations, time stamps determine the desired order in which updates 
will be delivered to the replicas. An update is stable, if no update with a lower time stamp 
is expected to arrive after it. Only stable updates will be delivered to the state machines. 
Consider a replica i receiving time-stamped updates from the other replicas 1, 2, 3,… via 
channels (1, i), (2, i), (3, i),…. If nonfaulty replicas communicate infinitely often and the 
channels are FIFO, then each state machine replica will receive through every channel the 
updates in the ascending order of time stamps. The dilemma here is that some nonfaulty 
replicas may not have any update to send for a long time. This affects the stability test. 
While applying an update with time stamp t, how will a replica decide if an update with 
a time stamp smaller than t will not arrive in the future via some other channel? One 
approach to overcome this and make progress is to ask nonfaulty servers to periodically 
send out null requests when it has no update to send. It is possible to combine the null mes-
sages with the periodic heartbeat messages that are exchanged among the replica servers. 
An alternative is to use real time as a basis of ordering the pending updates—from the 
known upper bound of the message propagation delay, a receiving process can deduce that 
the sender did not have anything to send up to a certain time. Since crash of a replica is 
detectable, a replica will ignore the channel from a faulty replica. This will handle stability 
in the presence of crash failures.

If the failure is byzantine, then a faulty client (or a faulty replica connected to a  client) 
may refuse to send the null message. However, since the upper bound of the message prop-
agation delay is known, the absence of a message can be detected.

16.3 DATA-CENTRIC CONSISTENCY MODELS
Replica consistency requires all copies of data to be eventually identical. However, due to 
the inherent latency in message propagation, it is sometimes possible for the clients to 
receive anomalous responses. Here is an example: In a particular flight, all the seats were 
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sold out, and two persons A and B in two different cities have been trying to make reserva-
tions. At 9:37:00, there was a cancellation by passenger C. A tried to reserve a seat at 9:37:25 
but failed to reserve the seat. Surprisingly, B tried to make the reservation at 9:38:00 and 
could grab it! While this appears awkward at a first glance, its acceptability hinges on the 
type of consistency model that is being used. Consistency determines what responses are 
acceptable following an update of a replica. It is a contract between the clients and the rep-
lica management system.

A DSM creates the illusion of a shared memory on top of a message-passing system 
(Figure 16.5). It can potentially support many data consistency models. Such consistency 
models are relevant in various applications like distributed file systems, distributed data-
bases, and web caching. The choice of a consistency model also influences the efficiency 
of concurrent programming. From the user’s perspective, stronger models impose severe 
restrictions on the system behavior, whereas weaker models tend to relax them. In the fol-
lowing, we present a few well-known consistency models:

 1. Strict consistency

 2. Linearizability

 3. Sequential consistency

 4. Causal consistency

 5. FIFO consistency

16.3.1 Strict Consistency

The trace (also called history) of a computation is a sequence of read (R) and write (W) 
operations on a shared variable x. One or more processes can execute these operations. We 
assume that each read and write operation is atomic.

Strict consistency corresponds to true replication transparency. If one of the processes 
executes x ≔ 5 at real time t and this is the latest write operation, then at a real time t′ > t, 
every process trying to read x will receive the value 5. Strict consistency criterion requires 

Replica of X

Replica of X Replica of X

Replica of X
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FIGURE 16.5 A DSM with four processes P, Q, R, S sharing a read–write object X.
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that regardless of the number of replicas of x, every process receives a response that is con-
sistent with the real time. Uniprocessor systems with a single copy of each variable trivially 
satisfy strict consistency.

The scenario in the previous example of two passengers A and B trying to reserve air-
line seats does not satisfy the strict consistency criteria, since even if a seat was released at 
9:37:00 via a cancellation, the availability of the seat was not visible to A at 9:37:25. Due to 
the nonzero latency of the messages, strict consistency is not implementable on distributed 
hardware. Note that read and write operations are considered to be nonblocking (other-
wise, one could allow the writer to acquire exclusive right to update all the copies before the 
update begins, and readers would remain blocked until the update ends).

16.3.2 Linearizability

Strict consistency is too strong and requires all replicas to be updated instantaneously. 
A slightly weaker version of consistency is linearizability.

Define a composite trace as an interleaving of the individual reads and writes into a single 
total order that respects the internal ordering of the actions of every process, as well as the 
external ordering of actions between processes as defined by their time stamp values. If such 
a composite trace is consistent, which means that every read returns the latest value written 
into the shared variable preceding that read operation, then the shared object is linearizable.

Figure 16.6 shows two example traces with two shared variables x and y. Initially, x = y = 0. 
For (b), the read and write operations by the processes A and B lead to the composite trace {init}
WA(x := 1)RA(y = 1)WB(y := 1)RB(x = 1), which is not consistent, so linearizability is not satisfied.

16.3.3 Sequential Consistency

A slightly weaker (and more widely used) form of consistency is sequential consistency. To 
understand the notion of sequential consistency, form a composite trace as an interleav-
ing of the individual reads and writes that respect the internal ordering of the actions of 
every process, but it is not necessary to respect the external ordering of actions between 
processes. Clearly, many such composite traces can be generated. Of all such traces, if there 
is at least one consistent trace, then sequential consistency is satisfied. The key concept in 
sequential consistency is that all processes should see all the write operations in the same 
order as in a consistent composite trace. Thus, if a write x:= u precedes another write x := v 
in a trace, then no process reading x will read x = v before x = u.

A

B

W(x := 1) R( y = 1)

W(y := 1) R(x = 1)

ts = 10 ts = 32

ts = 39ts = 23

A

B

W(x := 1) R(y = 1)

W(y := 1) R(x = 1)

ts = 10

ts = 32 ts = 39

ts = 23

(a) (b)

FIGURE 16.6 Two traces: (a) is linearizable but (b) is not linearizable. Here, ts denotes the time 
stamp of each action. Initially, x = y = 0.
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Linearizability is stronger than sequential consistency, that is, every linearizable 
object is also sequentially consistent. Therefore, the trace in Figure 16.6a satisfies 
sequential consistency. However, consider the trace in Figure 16.6b—it is not lineariz-
able, but one can still generate a consistent composite trace WA(x: = 1)WB(y: = 1)RA(y = 1)
RB(x = 1) out of it (WB(y: = 1) can be placed before RA(y = 1) since there is no obligation to 
respect the time stamp values when ordering action between two different processes). 
So sequential consistency holds.

Consider again the example of two customers B and C interacting with the airlines 
reservation system (Figure 16.7a), and assume that the total number of available seats in 
the flight is 100. This behavior is sequentially consistent, since there exists a consistent 
composite trace:

 { } ( ) ( : ) ( )init R seat W seat R seatB A C= = =100 99 99

If client B is unhappy with this anomalous outcome of the reservation system, then she is 
perhaps asking for linearizability.

The scenario in Figure 16.7b does not satisfy sequential consistency. The actions of 
the processes A and B lead to the only feasible composite subtrace WA(x: = 10)RB(x = 10)
WB(x: = 20). However, process C reads x as 20 first and then reads x as 10, so the two con-
secutive reads violate the program order of the two writes, and it is not possible to build a 
consistent composite trace that satisfies the local or internal orders.

16.3.4 Causal Consistency

In the causal consistency model, every process must see all writes that are causally related, 
in the same order. The order of values returned by various read operations must be con-
sistent with this causal order, forming a consistent composite trace. The writes may be 
executed by the same process or by different processes. Writes that are not causally related 
to one another can however be seen in any order by the different processes. Consequently, 
these do not impose any constraint on the order of values read by a process. Figure 16.8 
illustrates a causally consistent trace, but it is not sequentially consistent.
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FIGURE 16.7 (a) Sequential consistency is satisfied. (b) Sequential consistency is violated.
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In this trace, there is no causal order between WA(x: = 10) and WB(x: = 20). Therefore, 
processes C and D are free to read these values in any order, building their own perception 
of the history of the write operations. The trace does not satisfy sequential consistency, 
because that will require processes C and D to see the two writes in the same order, and 
that order should be reflected in the values that they read out.

Why are there so many different consistency models? True replication transparency is 
the ultimate target, and stronger consistency models are semantically closer to this target. 
However, the implementation of stronger consistency models has a higher time complexity 
and is thus inefficient. Weaker consistency models have fewer restrictions, are cheaper to 
implement, and lead to faster operations. This is particularly relevant in large-scale systems.

16.3.5 FIFO Consistency

FIFO consistency further weakens the specifications of causal consistency. It only requires 
that every process see all the write actions by a single process in the order in which they 
were issued. Processes are free to see the write actions by different processes in any order, 
even if they are causally related. Figure 16.9 shows an example. Processes C and D see the 
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FIGURE 16.8 The trace is causally consistent, but not sequentially consistent.
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FIGURE 16.9 The trace satisfies FIFO consistency, but not causal consistency.
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two writes by process A in the same order. However, although there is a causal relation 
between WA(x: = 10) and WB(x: = 20), processes C and D see them in different orders.

Consistency issues have been investigated in many different contexts. In addition to 
DSM on multicomputers, consistency models have also been extensively studied for prob-
lems related to cache coherence, web caching, distributed file systems, distributed data-
bases, and various highly available services.

16.4 CLIENT-CENTRIC CONSISTENCY PROTOCOLS
Data-centric consistency models have one thing in common: When multiple clients 
simultaneously update a shared data, a write–write conflict results and has to be appro-
priately resolved. In another variation of the problem, there are no write–write conflicts 
to resolve. A single authority or server will update the data in the storage system, and 
client side consistency has to do with how and when an observer sees updates made to 
a data object. Consider the example of a web page in the WWW. Only the owner of the 
page will update it. Usually, the updates are infrequent, and the number of reads far 
outnumbers the number of updates. Since browsers and web proxies keep a copy of the 
fetched page in their local cache and return it to the viewer following the next request, 
quite often, stale versions of the web page may be returned to the viewer. To maintain 
freshness, the cached copies are periodically discarded and updated pages are pulled 
from the server. As a result, updates propagate to the clients in a lazy manner. There 
will always be a window of inconsistency. Protocols that deal with consistency issues in 
such cases are known as client-centric protocols. In the following, we present the even-
tual consistency model, which is a popular model for client-centric consistency in large 
distributed systems.

16.4.1 Eventual Consistency

In eventual consistency, the storage system guarantees that if there is no new update on the 
data, then eventually all clients receive the correct view of the latest data. Such a model is 
acceptable in many large databases—the most popular the DNS (Domain Name System), 
where updates on a particular domain name are performed by designated naming authori-
ties and propagated in a lazy manner. Such updates are very infrequent and the implemen-
tation overhead is small.

Eventual consistency is acceptable as long as a client accesses the same replica of the 
shared data. Mobile clients can potentially access different versions of the replica and even-
tually consistency may be unsatisfactory. Consider a busy executive trying to update a 
database. She performs a part of the update, saves it in the cloud, then leaves for a meeting 
in a different city, and in the evening decides to finish the remaining updates. Since she 
may not be working on the same replica that she was working on in the morning (which of 
course depends on the data replication policy in the data centers), she may notice that some 
of the updates that she made in the morning are invisible. This means that consistency 
models for mobile clients need separate attention.
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16.4.2 Consistency Models for Mobile Clients

When replicas are geographically distributed, a mobile user will most likely use a replica 
closest to her. The following four consistency models are based on the sequence of opera-
tions that can be carried out by a mobile user:

 1. Read-after-read

 2. Write-after-write

 3. Read-after-write

 4. Write-after-read

16.4.2.1 Read-After-Read Consistency
Read-after-read or monotonic read consistency implies that when a read of a data set from 
one server S is followed by a read of its replica from another server S′, each read from S′ 
should return a value that is at least as recent as the value previously read from S. Relate 
this to the story of the busy executive and assume that she was reading emails in Iowa City 
and then flew to Boston and started reading her emails from the same mailbox. She should 
see all the emails that she read in Iowa City in the new location too.

16.4.2.2 Write-After-Write Consistency
Write-after-write or monotonic write consistency requires that when a write on a replica 
in server S is followed by a write on another replica in a different server S′, the earlier 
updates must be available to the replica in S′ before the next write is performed. An 
update on a large data set or a structured data can sometimes be partial. Consider the 
following scenario: Alice is the president of a company. She starts updating the salary 
database of 100 employees. She finishes giving raises from her office in Dallas and then 
travels to San Francisco, and there, she starts adding a 10% year-end bonus on the new 
salary for her employees. If only the first half of the updates (i.e., employees 1–50) is 
visible in the new location, then the bonus will not be correctly added to the salaries of 
employees 51–100.

As another example, consider that Bob is updating a tuple from (x1, y1) to (x2, y2). After 
updating only the first element, that is, modifying (x1, y1) to (x2, y1), he moves to another 
location and updates the second element of the tuple. If the first update is not visible in the 
second location at the time of the second update, then after the second update, the value of 
the tuple will be incorrectly written as (x1, y2) instead of the correct value (x2, y2). When 
the old update arrives later, it modifies the tuple to (x2, y1). Ideally, all updates must be 
applied on the previously updated values. Write-after-write consistency guarantees this.

This means that all replicas should be updated in the same order. In the data-centric 
consistency model, this is equivalent to sequential consistency that expects some total 
order among all writes. If writes are propagated in the incorrect order, then a recent update 
may be overwritten by an older update. The order of updates can be relaxed when they are 
commutative: for example, when the write operations update disjoint variables.
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16.4.2.3 Read-After-Write Consistency
Each client must be able to see the updates in a server S following every write operation by 
itself on another server S′. This is also called read your writes.

Consider a large distributed store containing a massive collection of music. Clients set 
up password-protected accounts for purchasing and downloading musical items of their 
choice. If a client changes her password in one location, calls her spouse in a distant city, 
and asks him to access the collection by logging into the account using her new password, 
then he must be able to do so. Read-after-write consistency will guarantee that the new 
password propagates to the new location before log in.

16.4.2.4 Write-After-Read Consistency
Each write operation following a read should take effect on the previously read copy, or a 
more recent version of it. Consider that Alice checked her account balance in the Sunrise 
Bank Iowa, and found that her paycheck of $1500 has been credited to her account, rais-
ing her balance to $1900. She took a flight to Denver during the afternoon, went to a store 
there, and tried to buy an item for $700 using her bankcard from the Sunrise Bank. But 
to her embarrassment, the payment did not go through due to insufficient balance in the 
account. Alice clearly remembered that she did not spend any money from her account 
in the interim period. Her attempted write (deduction from her balance in the bank) did 
not take place on the latest balance that she read before her departure from Iowa. This is 
an example of a violation of the write-after read consistency.

16.5 IMPLEMENTATION OF DATA-CENTRIC CONSISTENCY MODELS
Ordered multicasts (Chapter 15) play an important role in the implementation of consis-
tency models. In the succeeding text, we outline some of these implementations.

Linearizability: Linearizability can be implemented using total order multicast that forces 
every replica to process all reads and writes in the same order. Here are the steps:

 1. A process that wants to read (or write) a shared variable x calls a procedure read(x) (or 
write(x)) from its local server. The local server sends out the read and writes requests 
to all other servers using total order multicast.

 2. Upon the final delivery of these requests, all replica servers update their copies of x 
in response to a write (which signals the completion of the write(x) operation). For 
read(x), the replica servers only return acks to the initiating server signaling the appro-
priate time (consistent with the total order) to read the copy of x from its local server.

The correctness follows from the fact that every replica sees and applies all writes and reads 
in the same order, which reflects a consistent composite trace.

Sequential consistency: To implement sequential consistency, each read operation 
immediately returns the local copy. Only write operations trigger a total order mul-
ticast. Following the multicast, other servers update their local copies of the shared 
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variables. As a result, every replica sees all writes in the same order, and each read 
returns a value consistent with some write in this total order.

Causal consistency: To implement causal consistency, one approach is to use vector time 
stamps. As usual, every write request is tagged with the current value of the vector clock 
and multicast to all replicas using the causal order multicast protocol (Chapter 15). Upon 
receiving these writes, each replica updates its local copy. This satisfies the causality 
requirement. Read operations immediately return the local copy, which is consistent with 
some write in this causal order.

Eventual consistency: The basic method involves multicasting the updates to all the serv-
ers. Possible methods include flooding the update (expensive in terms of the number of 
messages), or using a spanning tree (works for fixed topologies, but failures and frequent 
disconnections limit its applicability), or using gossip protocols. The order in which a rep-
lica will see these updates can vary from one replica to another and can potentially lead 
to inconsistency that needs to be addressed. One such implementation using the gossip 
protocol interlaced with antientropy sessions is discussed in the description of the Bayou 
distributed data management service (Section 16.8.2).

Read-after-read and write-after-write: Starting from the initiating server, at each server 
where a user has read a data, build an RS with all the reads performed by that user. Along 
with data items, the set RS should also be propagated to all the other servers. When the 
user logs in at a different server and issues a read request, the server checks if it has received 
the most recent set RS and brought the read values up to date. If this is not done, then 
the read operation is forwarded to a server that has received the set RS, the reads are per-
formed, and the updated RS is pulled into that server. Efficiency considerations need some 
refinements of these basic steps. For write-after-write, the steps are similar except that the 
server maintains (and propagates) a write set (WS) with all the writes performed by a user.

16.6 QUORUM-BASED PROTOCOLS
A classic method of managing replicated data uses the idea of a quorum. A quorum system 
consists of a family of subsets of replicas with the property that any two of these subsets 
overlap. To maintain consistency, read and write operations engage these subsets of  replicas, 
leading to several benefits: First, the load is distributed and the load on each replica is min-
imized. Second, the fault tolerance improves by minimizing the impact of failures, since 
the probability that every quorum has a faulty replica is quite low. This improves the avail-
ability too. However, classic quorum systems do not support partition tolerance, although 
in real-life network, outages can partition the replicas into two or more subgroups. In gen-
eral, there are two approaches for dealing with such partitions. One approach is to main-
tain internal consistency within each subgroup, although no consistency can be enforced 
across subgroups due to the lack of communication. Mutual consistency is eventually 
restored only after the connectivity is restored. The other approach is to allow updates 
in only one group that contains the majority of replicas and postpone the updates in the 
remaining replicas—so these contain out-of-date copies until the partition is repaired.
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Most quorum systems use the second approach. The size of the subset of replicas 
needed to perform a read or a write operation is called the read quorum or the write 
quorum. Here is a description of how it works: Let there be N servers. To complete a 
write, a client must successfully place the updated data item on W>N/2 servers. The 
updated data item will be assigned a new version number that is obtained by incre-
menting its current version number. To read the data, the client must read out the 
copies from any subset of R>N/2 servers. From these, it will find out the copy with 
the highest version number and accept that copy. Figure 16.10 shows an example. For 
performing a read or a write operation, the reader or the writer has to acquire exclu-
sive control of the required number of replicas. For this, as in concurrency control 
of transactions, 2PL can be used—a reader will use read locks, and a writer will use 
write locks. For any given replica, writers will be granted exclusive rights, but readers 
can share the access to a server with other readers. The locks will be released after the 
operation is completed or aborted.

It is easy to make the following observations in such a quorum system:

Observation 1: The system is resilient to the crash of f ≤ (N/2)−1 servers.

Observation 2: Since a read lock does not block readers, multiple readers can concur-
rently read: For example, in Figure 16.10, one reader can read from the quorum {S0, 
S1, S2, S4}, while a second reader can read from the quorum {S1, S3, S5, S6}.

Observation 3: Two different write operations cannot proceed at the same time, so all 
write operations are serialized. Furthermore, the intersection of the read quorum and 
the write quorum is nonempty, so reads do not overlap with writes. As a result, every 
read operation returns the latest version that was written, and single-copy serializ-
ability* is maintained.

* The effect of transactions performed by clients on replicated data is the same as if they had been performed sequentially 
on a single set of data items.
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FIGURE 16.10 A quorum system with N = 7, R = 4, W = 4. The old (value, version) of the data is 
(0, 0) and the updated (value, version) is (5, 1).
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Observation 4: During a network partition, the component containing the majority of 
the replicas will be active. The minority component is brought up to date after the 
connectivity is restored. However, in partitioned configurations, the system becomes 
more vulnerable. As an example, in Figure 16.10, if {S0, S2, S4} move to a different 
partition, then in the majority component, an adversary can crash any single server, 
and the replication system stops working.

The original idea of quorum systems is due to Thomas [T79]. The scheme presented earlier 
can be further generalized to allow relaxed choices of the read and write quorums. For 
example, it is possible to design a quorum-based protocol if the read and write quorums 
satisfy the following two conditions:

 1. W + R > N

 2. W
N>
2

Thus, in a system with 10 replica servers, an example of a possible choice is W = 9, R = 2. 
The extreme case of W = N, R = 1 (known as read-one-write-all) is useful when the writes 
are very infrequent compared with reads. It allows faster read and better parallelism. The 
downside is that write will be impossible if a single server crashes. This generalization is 
due to Gifford [G79].

16.7 REPLICA PLACEMENT
There are many different policies for the placement of replicas of shared data. Here is a 
summary of some of the well-known strategies:

Mirror sites: On the WWW, a mirror site contains a replica of the original website on a dif-
ferent server. There may be several mirror sites for a website that expect a large number of 
hits. These replica servers are geographically dispersed and improve both availability and 
reliability. A client can choose any one of them to cut down the response time or improve 
availability. Sometimes a client may also be automatically connected to the nearest site. 
Such mirror sites are permanent replicas.

Server-generated replicas: Here, replication is used for load balancing. The primary 
server copies a fraction of its files to a replica site only when its own load increases. 
Such replica sites are hosted by web-hosting services that temporarily loan their spaces 
to a third party on demand. The primary server monitors the access counts for each of 
its files. When the count exceeds a predetermined threshold h1, the file is copied into 
a host server that is geographically closer to the callers, and all calls are rerouted. The 
joint access counts are periodically monitored. When the access count falls below a 
second threshold h2(h2 > h1), the file is removed from the remote server, and rerouting 
is discontinued. The relation h1 > h2 helps overcome a possible oscillation in and out of 
the replication mode.
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Client caches: The client maintains a replica in its own machine or another machine in the 
same LAN. The administration of the cache is entirely the client’s responsibility, and the 
server has no contractual obligation to keep it consistent. In some cases, the client may 
request the server for a notification in case another client modified the server’s copy. Upon 
receiving such a notification, the client invalidates its local copy and pulls a fresh copy 
from the server during a subsequent read. This restores consistency.

16.8 BREWER’S CAP THEOREM
Large-scale web services like high-frequency trading or auction heavily rely on replication 
across a vast pool of servers that are geographically dispersed. In an invited talk in the 
ACM PODC 2000 conference, Eric Brewer presented a conjecture—that it is impossible 
for a web service to provide all three of the following guarantees: consistency, availability, 
and partition tolerance (CAP). Individually, each of these guarantees is highly desirable; 
however, a web service can meet at most two of the three guarantees. The conjecture was 
later analyzed by Gilbert and Lynch [GL02] and is popularly called the CAP theorem. In 
this section, we present arguments in support of Brewer’s CAP theorem.

Consistency in this case refers to atomicity as in the ACID properties of transactions. 
Consider an auction system in which the current price of an item is x across all servers 
as shown in Figure 16.11a. If the price changes from x to x′, then the revised price should 
be reflected in all the servers in a bounded time so that linearizability holds. Availability 
implies that every request received by a nonfaulty server in the system leads to a response. 
Ideally, a web service should be available as long as the network on which they run is up. 
Finally, partition tolerance implies that the service should be available even if the system 
partitions into two or more disjoint components. This implies that the service will allow the 
network to lose arbitrarily many messages sent from one partition to another.

Now, consider Figure 16.11b that shows that as the price of the item is being updated 
from x to x′, a communication failure has partitioned the system to two fragments π1 and 
π2. For consistency (read linearizability), the new value must be propagated from π1 to 
π2; otherwise, a read operation by a client in π2 at a later time will not return the new 
value. But clearly, this is not possible. It does not matter if the new value x′ is pushed 
from partition π1 or pulled from partition π2. This means that to support consistency and 
availability, partition tolerance has to be sacrificed. To tolerate network partition, one can 
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FIGURE 16.11 A value x is being updated to x′ across all the replicas in the system when the system 
partitioned: (a) before partition and (b) after partition.
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however totally disregard consistency or only assure eventual consistency (since the servers 
in partition π2 can be brought up to date after the connectivity is restored), which is much 
weaker than linearizability. Another possibility is to sacrifice availability—so when a client 
logs in at a server in partition π2, the server will send a request to some server in partition 
π1 asking for an update. Until that update arrives, the client will be kept waiting. When 
the response comes, the value in the server will be brought up to date and consistency will 
be restored, but there is no guarantee how long it will take. So, the service will remain 
unavailable, although consistency and partition tolerance are guaranteed.

16.9 CASE STUDIES
In this section, we discuss three replication-based systems and study how they manage the 
replicas and maintain consistency. The first is the distributed file system Coda, the second 
is the highly available service Bayou that is based on the gossip architecture, and the third 
is Amazon’s Dynamo.

16.9.1 Replication Management in Coda

Coda (acronym for constant data availability) is a distributed file system designed by 
Satyanarayanan and his group in Carnegie Mellon University. It evolved from their earlier 
design of the Andrew file system (AFS). In addition to supporting most features of AFS, 
Coda also supports data availability in the disconnected mode.

Coda allows clients to continue even when the network is partitioned. Mobile users fre-
quently get disconnected from the network, but still want to continue their work without 
much disruption. Also, network problems and communication failures can cause network 
partitions, making some replicas unreachable. This affects the implementation of consistency 
protocols, since partitions prevent update propagation. As a result, clients in disconnected 
components receive inconsistent values. To sustain operation and maintain availability, con-
sistency properties will at best hold within each connected component and with nonfaulty 
replicas only. If applications consider this preferable to nonavailability of the service, then con-
tracts have to be rewritten, leading to weaker consistency models. An additional requirement 
in disconnected operation is that after connectivity is restored, all replicas must be brought up 
to date and reintegrated into the system. There are various schemes to track the recentness of 
the updates and to identify conflicts. Coda uses vector time stamps for this purpose.

To maintain high availability, the clients’ files are replicated and stored in volume storage 
groups (VSGs). Depending on the current state of these replicas and the connectivity between 
the client and the servers, a client can access only a subset of these so-called available VSGs 
(AVSGs). To open a file, the client downloads a copy of it from a preferred server in its AVSG 
and caches it in his local machine. The preferred server is chosen depending on its physical 
proximity or its available bandwidth, but the client also makes sure that the preferred server 
indeed contains the latest copy of the file (using the time stamps of the updated copies)—
otherwise, a server that contains the most recent updates is chosen as the preferred server. 
While closing the file, the client sends its updates to all the servers in its AVSG. This is called 
the read-one-write-all strategy. When the client becomes disconnected from the network, its 
AVSG becomes empty, and the client relies on the locally cached copies to continue operation.
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Files are replicated in the servers, as well as in the client cache. Coda considers the server 
copies to be more trustworthy (first-class objects) than the client copies (second-class 
objects), since clients have limited means and resources to ensure the quality of the object. 
There are two approaches to file sharing: pessimistic and optimistic. In a pessimistic sharing, 
file modifications are not permitted until the client has exclusive access to all the copies. This 
maintains a stricter consistency but has poor availability. The optimistic approach allows a 
client to make progress regardless of whatever copies are accessible and is the preferred 
design choice in Coda. Reintegration to restore consistency is postponed to a later stage.

The reintegration occurs as follows: Each server replica has a vector (called Coda version 
vector [CVV]) attached to it—this reflects the update history of the replica. The kth compo-
nent of the CVV (call it CVV[k]) of the replica of a file F represents the number of updates 
made on the replica of that file at server k. As an example, consider four replicas of a file F 
stored in the servers V0, V1, V2, V3 shared by two clients 0 and 1. Of these four replicas, the 
copies V0, V1 are accessible to client 0 only, and copies V2, V3 are accessible to client 1 only. 
During a time period A, client 0 updates its local copy and multicasts them to V0 and V1, so 
the CVV of these versions becomes 1, 1, 0, 0. If client 1 also updates its local copy during a 
time period B that overlaps with A and multicasts its updates to the servers, the CVV of cli-
ent 1’s version in V2, V3 becomes 0, 0, 1, 1. When the connections are restored and the AVSG 
of both clients includes all four servers, each server compares the two CVVs and finds them 
incomparable.* This leads to a conflict that cannot always be resolved by the system and 
may have to be resolved manually. If however CVV(F) = 3, 2, 1, 1 for client 0, and CVV(F) = 
0, 0, 1, 1 for client 1, then the first CVV is considered greater than the second one. In such a 
case, during reintegration, the CVVs of all four replicas are modified to 3, 2, 1, 1 and replicas 
V2 and V3 are updated using the copies in V0 or V1. Coda observed that write–write conflicts 
are rare (which is true for typical UNIX environments). The traces of the replicas reflect the 
serialization of all the updates in some arbitrary order and preserve sequential consistency.

Coda guarantees that a change in the size of the AVSG is reported to the clients within 
a specific period of time. When a file is fetched from a server, the client receives a promise 
that the server will call it back when another client has made any change into the file. This 
is known as callback promise. When a shared file F is modified, a preferred server sends out 
callbacks to fulfill its promise. This invalidates the local copy of F in the client’s cache—so, 
to open file F, the client has to load the updated copy from an available server in the VSG. If 
no callback is received, then the copy in the local cache is used. However, in Coda, since the 
disconnected mode of operation is supported, there is a possibility that the callback may 
be lost because the preferred server is down or out of the client’s reach. In such a case, the 
callback promise is not fulfilled, that is, the designated server is freed from the obligation 
of sending the callback when another client modifies the file.

16.9.2 Replication Management in Bayou

Bayou is a distributed data management service that emphasizes high availability. It was 
designed to operate under diverse network conditions, and it supports an environment for 

* See Chapter 6 to find out how two vector time stamps can be compared.
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computer-supported cooperative work, such as shared calendars, bibliographic databases, 
document editing for disconnected workgroups, as well as applications that might be used 
by individuals at different hosts at different times.

The system satisfies eventual consistency, which only guarantees that all replicas even-
tually receive all updates. Update propagation only relies on occasional pairwise com-
munications between servers. The system does not provide replication transparency—the 
application explicitly participates in conflict detection and resolution. The updates received 
by two different replica managers are checked for conflicts and resolved during occasional 
antientropy sessions that incrementally steer the system toward a consistent configuration. 
Each replica applies (or discards) the updates in such a manner that eventually the replicas 
become identical to one another.

Supporting application-specific conflict detection and resolution is a major feature 
in the design of Bayou. A given replica enqueues the pending updates in the increasing 
order of time stamps. Initially, all updates are tentative. In case of a conflict, a replica 
may undo a tentative update or reapply the updates in a different order. However, at some 
point, an update must be committed or stabilized, so that the result takes permanent 
effect. An update becomes stable when (1) all previous updates have become stable and 
(2) no update operation with a smaller time stamp will ever arrive at that replica. Bayou 
designates one of the replicas as the primary—the commit time stamps assigned by the 
primary determine the total order of the updates. During the antientropy sessions, each 
server examines the time stamps of the replica on other servers. The number of trial 
updates depends on the order of arrival of the updates during the antientropy sessions. 
A single server that remains disconnected for some time may prevent updates from sta-
bilizing and cause rollbacks upon its reconnection.

Bayou allows every possible input from clients with no need for blocking or locking. For 
example, Alice is a busy executive who makes occasional entries into her calendar, but her 
secretary Bob usually schedules most of the appointments. It is possible that Alice and Bob 
make entries into the shared calendar for two different meetings at the same time. Initially, 
these are tentative. Before the updates are applied, the dependency check will reveal the 
conflict. Such conflicts are resolved by allowing only one of the conflicting updates or by 
invoking application-specific merge procedures that accommodate alternative actions.

The antientropy* sessions minimize the degree of chaos in the state of the replicas. The 
convergence rate depends on the connectivity of the network, the frequency of the antien-
tropy sessions, and the policy of selecting the partners. The protocols used to propagate the 
updates are known as epidemic protocols, reminiscent of the propagation of infectious dis-
eases. Efficient epidemic protocols should be able to propagate the updates to a large number 
of replicas using the fewest number of messages. In one such approach, a server S1 randomly 
picks another server S2. If S2 lags behind S1, then either S1 can push the update to S2 or S2 
can pull the update from S1. Servers containing updates to be propagated are called infective, 
and those waiting to receive updates are called susceptible. If a large fraction of the servers 
are infective, then only pushing the update to other replicas may not be the most efficient 

* Entropy is a measure of the degree of disorganization of the universe.



Replicated Data Management   ◾   359  

approach, since in a given time period, the likelihood of selecting a susceptible server for 
update propagation is small. From this perspective, a combination of push and pull strate-
gies works better. The goal is to eventually propagate the updates to all servers.

The gossip protocol is very similar to the mechanism of spreading rumors in real life. 
A server S1 that has recently updated a replica randomly picks up another server S2 and 
passes on the update. There are two possibilities: (1) S2 has already received that update 
via another server, or (2) S1 has not received that update so far. In the first case, S1 loses 
interest in sending further updates to S2 with a probability 1/p—the choice of p is left 
to the designer. In the second case, both S1 and S2 pick other servers and propagate the 
updates and the game continues. Demers et al. [DGH+87] showed that the fraction of 
servers that remains susceptible (i.e., does not receive the update) satisfies the equation 
s = e−(1 + p)(1 − s). Thus, s is a nonzero number—as a result, eventual consistency may not be 
satisfied. However, as p increases, the fraction of susceptible servers decreases. A change of 
p from 1 to 2 reduces the number of susceptible servers from 20% to 6%.

Terry et al. [TTP+95] showed that deleting an item during the antientropy sessions of 
Bayou can be problematic: Suppose a server S deletes a data item x from its store and propa-
gates it as an update to other servers. This does not prevent S from receiving older copies 
of x from other servers and treat them as new updates. The recommendation is to keep a 
record of the deletion of x, issue a death certificate, and spread it across the system. Stale 
death certificates can be flushed out of the system using time-outs.

16.9.3 Amazon Dynamo

Amazon’s Dynamo is a highly scalable and highly available key–value storage designed to 
support the implementation of its various e-commerce services. Dynamo serves tens of 
millions of customers at peak times using thousands of servers located across numerous 
data centers around the world. At this scale, component failures and communication out-
ages are expected events. In spite of these, Dynamo helps create a reliable system to provide 
its clients an always-on experience. The services using Dynamo guarantee a  service-level 
agreement (SLA) that reflects the high availability and reliability of the system. The imple-
mentation of the key–value store should satisfy the ACID properties of transactions. 
However, for efficiency considerations, such a system sacrifices strong consistency proper-
ties. Conflicts frequently occur, but that does not impact the write operation—conflicts are 
resolved during a subsequent read operation.

Each key is stored in a selected set of servers. Dynamo uses distributed hash tables (DHTs) 
to map its servers in a circular key space using consistent hashing that is more commonly 
used in many P2P networks. The key K to be stored is also hashed using the same hashing 
function, mapping it to a point in the circular key space. Let SF and SG be the two neighbors 
of key K on the ring. Then all keys satisfying the condition hash(SF) < hash(K) ≤ hash(SG) 
are stored in the server SG that is a clockwise neighbor of K (Figure 16.12). Each server thus 
becomes responsible for the region in the ring between itself and its anticlockwise neigh-
bor on the ring. However, the random position assignment of each node on the ring may 
lead to a skewed data and load distribution, as it is oblivious to the heterogeneous node 
capacities. To address this, Dynamo decided to use virtual nodes that map each physical 
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server to multiple points, instead of a single point on the ring. This allows an unavailable 
node to shed its load to the available ones with higher capacity.

High availability is achieved by replicating each data on selected servers. The server on 
which a key is mapped takes up the role of a coordinator, and it replicates the key across the 
next T servers that are its clockwise neighbors—the value of T depends on the reliability 
and the accessibility of the servers. Dynamo uses a quorum system: Let W and R be the 
write and the read quorums. Thus, for a write to succeed, W out of the T servers must be 
updated. A successful read is defined in a similar way.

Vector clocks: Dynamo uses vector clocks to keep track of the history of its multiple ver-
sions of data and resolve conflicts. The multiple versions are generated when the replicas 
are updated by different servers at different times. A vector clock is a list (Si, n · i) where Si 
is the server id and n · i is a nonnegative integer associated with server i. The vector clock 
changes after every write operation on a given object (Figure 16.12b), which helps determine 
whether there exists a causal ordering between two versions of an object. Measurements 
showed that multiple versions of data are however rare. In a 24 h profile of the shopping cart 
service, 99.94% of requests saw exactly one version, 0.00057% of requests saw 2 versions, 
0.00047% of requests saw 3 versions, and 0.00009% of requests saw 4 versions.

Implementing write and read: In response to a write request, the coordinator generates the 
vector clock for the new version and sends the new version to the top T reachable nodes. If at 
least W nodes respond, then the write is considered successful. During a read operation, the 
coordinator sends a request for all existing version to the top T reachable servers. If it receives 
R responses, then the read is considered successful—the various versions are returned to the 
reader for reconciliation, and the reconciled version is written back. Dynamo uses sloppy 
quorum that is a variation of the traditional quorum system—T, R, and W are limited to the 
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first set of reachable nonfaulty servers in the consistent hashing ring—this speeds up the read 
and the write operations by allowing them to ignore the responses from the slow servers. In 
some of the common configuration, Dynamo used the values (3, 2, 2) for (T, R, W).

Hinted hand off: To maintain the spirit of always write, Dynamo uses hinted hand off. When 
a designated server S is inaccessible or down, the write is directed to a different server S′ with 
a hint that this update is meant for S. S′ later delivers the update to S when it recovers.

The service level agreement (SLA) is quite stringent—a typical SLA requires that 99.9% 
of the read and write requests execute within 300 ms. Dynamo demonstrated that decen-
tralized techniques can be used to build a scalable and highly available system, and an 
eventual consistent storage system can be a building block for highly available applications.

16.10 CONCLUDING REMARKS
The notion of consistency is central to replicated data management. Weaker consistency 
models satisfy fewer requirements—but their implementation costs are also lower, so they 
are preferred in the design of large-scale distributed systems. This chapter discusses a few 
important consistency models that have been widely used in various applications. It is the 
responsibility of the application to judge whether a given consistency model is appropriate.

Client mobility adds a new dimension to the consistency requirements. Also, network 
partitions complicate the implementation of consistency models—Coda, Bayou, and 
Dynamo present three different examples of dealing with fragile network connectivity. 
Since the CAP theorem states that the three properties (strong) consistency, availability, 
and partition tolerance cannot be implemented in a single system, practical implementa-
tions have to decide which one to forego. Availability is the driving force behind successful 
e-commerce systems like Dynamo.

16.11 BIBLIOGRAPHIC NOTES
The primary-backup protocol follows the work by Budhiraja et al. [BMS+92]. In [L78], 
Lamport coined the term state machine, although he did not consider failures in that paper. 
Schneider [Sch90] extended the work by including failures and wrote a tutorial on the topic. 
Lamport also introduced sequential consistency [L79]. Herlihy and Wing [HW90] introduced 
linearizability in order to devise formal proofs of concurrent algorithms. Gharachorloo et al. 
[GLL+90] presented causal consistency and several other relaxed versions of consistency in 
the context of shared-memory multiprocessing (DSM). The general architecture of Coda is 
presented in [SKK+90]. In Kistler and Satyanarayanan [KS92] discussed the disconnected 
mode of operation in Coda.* Client-centric consistency models originate from Bayou and 
are described by Terry et al. [TPS+98]. Demers et al. [DGH+87] proposed the epidemic pro-
tocol for update propagation. The CAP theorem was first presented as a conjecture by Eric 
Brewer in his ACM PODC 2000 invited talk. Later, Lynch and Gilbert [LG02] analyzed it in 
more detail. In the Symposium on Operating Systems (SOSP) 2007 conference, DeCandia 
et al. [DHJ+07] presented the architecture of Amazon’s Dynamo.

* Coda papers are listed in http://www.cs.cmu.edu/~odyssey/docs-coda.html, accessed April 9, 2014.
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EXERCISES
16.1 A replication management system uses the primary-backup protocol in the pres-

ence of omission failures. Argue that in the presence of m faulty replicas, omission 
failures can be tolerated when the total number of replicas n > 2m.

(Hint: Divide the system into two groups each containing m replicas. With the 
occurrence of omission failure, each group may lose communication with the other 
group and end up electing a separate leader.)

16.2 Consider two shared read and write objects X, Y and a history of read and write 
operations by two processes P, Q as shown in Figure 16.13.

What is the strongest consistency criterion satisfied by the earlier traces? 
Briefly justify.

16.3 In traces satisfying causal consistency, different servers can see the concurrent updates 
of a shared object in different orders. As a result, the object replicas at various servers 
may not converge to the same final state after all updates stop. For example, in the 
traces in Figure 16.8, the final values of x will be 10 in server C and 20 in server D. The 
causal coherence model attempts to address this problem by requiring that updates of 
a given object be ordered the same way at all processes that share the object. Accesses 
to distinct objects can still satisfy the requirements imposed by causal consistency.

Present an example to distinguish causal consistency from causal coherence. 
Suggest a distributed implementation of this model and compare it with the imple-
mentation of causal consistency.

16.4 Consider two implementations of quorum systems with N = 10 replicas. In the first 
implementation, the read quorum R = 1 and the write quorum W = 10. The second 
implementation uses R = 4 and W = 8. Are these two equivalent? For what reason will 
you favor one over the other? Explain. What is the problem with R = 7 and W = 5?

16.5 Consider a quorum-based replica management system with N servers, a read quo-
rum R, and a write quorum W:
a. Will sequential consistency be satisfied if W = N/2, R = N/2? Briefly justify.
b. Will linearizability be satisfied if W = (N/2) + 1, R = (N/2) + 1? Briefly justify.

16.6 To prevent an adversary from tampering the quorum system by crashing a few serv-
ers, probabilistic quorum systems specify a probability distribution in choosing the 
quorum from a given set. The rule is as follows: If N1 and N2 are two independently 
chosen quorums, then prob [N1∩N2 = Ø] < ε.

W (X := 1) W (X := 2)

W (Y := 2)W (Y := 1)

R(Y = 1)

R(Y = 2)R(X = 2)

ts = 10

ts = 12 ts = 18

ts = 24

ts = 30

ts = 33

ts = 40

FIGURE 16.13 A history of read and writes by two processes P, Q.
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Now, consider randomly choosing two different quorums of size c n  from a 
set of n servers. Show that it will satisfy the requirements of a probabilistic  quorum 
system with c = ln(1/ε).

16.7 Most replicated data management protocols assume that the copies of data reside 
at static nodes (i.e., servers). Technological growth now permits users to carry their 
personal servers where they keep copies of all objects that are of interest to them. 
Some of these objects may be of interest to multiple users and thus may be replicated 
at the mobile personal server nodes. Accordingly, update dissemination must find 
out which nodes will receive a given update.

Suggest the design of a protocol that will integrate node discovery with update 
dissemination.

16.8 In this exercise, we address if the composition of multiple traces preserves certain 
forms of replica consistency. Consider a shared queue and two processes P and Q 
enqueuing and dequeuing x, y as shown in Figure 16.14. Parts (a) and (b) illustrate 
two traces. Trace (c) is the composite trace that combines (a) and (b).

Are these three traces linearizable? What conclusions can you draw from this?
16.9 Alice changed her password for a bank account while she was in Colorado, but she 

could not access the bank account using that password when she reached Minneapolis. 
Can this be attributed to the violation of some kind of consistency criterion? Explain.

16.10 Consider the following program executed by two concurrent processes P, Q in a 
shared-memory multiprocessor. Here, x, y are two shared variables.

Process P   Process Q
{initially x = 0}  {initially y = 0}
x: = 1;   y: = 1;
if y = 0 → x: = 2 fi; if x = 0 → y: = 2 fi;
display x   display y

If sequential consistency is maintained, then what values of (x, y) will be displayed?

enq(x) deq(y)

enq(y)

ts = 20

ts = 25

ts = 30
P

Q
(a)

enq(y)

enq(x)

ts = 10

ts = 35

P

Q
deq(x)

ts = 15(b)

deq(y)

deq(x)

enq(x)

enq(x)

enq(y)

enq(y)

ts = 35

ts = 10

ts = 15

ts = 20

ts = 25

ts = 30
P

Q
(c)

FIGURE 16.14 A composition of two different traces: trace (c) combines (a) and (b).
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16.11 Some shared-memory multiprocessors use write buffers to speed up the operation of 
the write-through cache memory (Figure 16.15). It works as follows: When a variable x 
is updated, the processor writes its value into the local cache C and at the same time 
puts the updated value into a write buffer W. A separate controller then transfers this 
value into the main memory. The advantage is that the processor does not have to 
wait for the completion of the write memory operation, which is slow. This speeds up 
instruction execution. For a read, the data are retrieved from the local cache.

If the program in Exercise 16.10 runs on the multiprocessor with the write buf-
fers, then will sequential consistency be satisfied? Explain your answer.

16.12 Consider the following three schemes for large-scale replica management. For each 
of these, find out which two of the three CAP properties hold:
a. Web servers prefer weak consistency. The content of a cached page expires after 

a lease of time. Users still use the old content, until they are refreshed by the 
source, or the latest data pulled by the user.

b. Quorum-based protocols.
c. Replica update is treated as a transaction and replicas are updated using the 2PC 

protocol.
16.13 (Programming exercise) In a building, there are eight meeting rooms, which are 

shared by 10 departments on an as-needed basis. Each department has a secretary 
who is responsible for reserving meeting rooms. Each reservation slot is of 1 h dura-
tion, and rooms can only be reserved between 8 a.m. and 5 p.m. Your job is to imple-
ment a shared room reservation schedule that can be used by the secretaries.

Use the following conflict resolution rule: If multiple appointments overlap, the 
earliest entry for that slot prevails and others are cancelled. If there is a tie for the 
earliest entry, the secretaries’ first names will be used to break the tie. Each secretary 
will work on a separate replica of the schedule and enter the reservation request 
stamped by the clock time. The clocks are synchronized. Dependency checks will be 
done during the antientropy sessions as in Bayou. The goal is eventual consistency.

Arrange for a demonstration of your program.

CW CW
Shared

memory
M

FIGURE 16.15 A shared-memory multiprocessor with write buffers.
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C h a p t e r  17

Self-Stabilizing Systems

17.1 INTRODUCTION
In large-scale distributed systems, failures and perturbations are expected events and not 
catastrophic exceptions. External intervention to restore normal operation or to perform a 
system configuration is difficult, and it will only get worse in the future. Therefore, means 
of recovery have to be built in.

Fault-tolerance techniques can be divided into two broad classes: masking and non-
masking. Certain types of applications call for masking type of tolerance, where the effect 
of the failure is completely invisible to the application; these include safety–critical sys-
tems, some real-time systems, and certain sensitive database applications in the financial 
world. For others, nonmasking tolerance is considered adequate. In the area of control 
systems, feedback control is a type of nonmasking tolerance used for more than a cen-
tury. Once the system deviates from its desired state, a detector detects the deviation and 
sends a correcting signal that restores the system to its desired state. Rollback recovery 
(Chapter 14) is a type of nonmasking tolerance (known as backward error recovery) that 
aims at making the history of the computation correct and relies on saving intermediate 
states or checkpoints on a stable storage. Stabilization (also called self-stabilization), on 
the other hand, does not rely on the integrity of any kind of data storage and makes no 
attempt to recover lost computation but guarantees that eventually a good configuration 
is restored. This is why it is called forward error recovery.

Stabilizing systems are meant to tolerate transient failures that can corrupt the data 
memory in an unpredictable way. However, it rules out the failure or corruption of the pro-
gram codes. The program codes act as recovery engines and help restore the normal behav-
ior from any interim configuration that may be reached by a transient failure. Stabilization 
provides a solution when failures are infrequent and temporary malfunctions are accept-
able and the MTBF is much larger than the MTTR.

The set of all possible configurations or behaviors of a distributed system can be divided 
into two classes: legitimate* and illegitimate. The legitimate configuration of a nonreactive 

* Legitimate configurations are also called legal or consistent configurations.
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system is usually represented by an invariant over the global state of the system. For 
 example, in network routing, a legal state of the network corresponds to one in which 
there is no cycle in the routes between a pair of nodes. In a replicated database, a legitimate 
configuration is one in which all the replicas are identical. In reactive systems, legitimacy 
is determined not only by a state predicate but also by behaviors. For example, a token ring 
network is in a legitimate configuration when (1) there is exactly one token in the network, 
and (2) in an infinite behavior of the system, each process receives the token infinitely 
often. If a process grabs the token but does not release it, then the first criterion holds, but 
the second criterion is not satisfied, so the configuration becomes illegitimate. Figure 17.1 
outlines the state transitions in a stabilizing system.

Well-behaved systems always remain in a legal configuration. This is made possible by 
(1) proper initialization that makes the initial configuration legal, (2) the closure property 
of normal actions that transform one legal configuration to another, and (3) the absence 
of failures or perturbations. However, in real life, such a system may switch to an illegal 
configuration due to the following reasons:

Transient failures: A transient failure may corrupt the system state (i.e., the data mem-
ory) in an unpredictable way. Some examples are the disappearance of the only circu-
lating token from a token ring or data corruption due to radio interference or power 
supply variations.

Topology changes: The topology of the network changes at run time when a node crashes 
or a new node is added to the system. These are characteristics of dynamic networks. 
Frequent topology changes are common in mobile computing.

Environmental changes: The environment of a program may change without notice. The 
environment of a program or a system consists of external variables that it can only 
read but not modify. A network of processes controlling the traffic lights in a city 
may run different programs depending on the volume and the distribution of traffic. 
In this case, the traffic pattern acts as the environment. If the system runs the early 
morning programs in the afternoon rush hours, the application will perform poorly, 
and, therefore, so the configuration is considered illegal.

Once a system configuration becomes illegal, the closure property alone is not adequate 
to restore the system to a legal configuration. What is required is a convergence mechanism 

Legitimate Illegitimate

Fault

(Stabilization)
Program actions

Program
actions

FIGURE 17.1 The states and state transitions in a stabilizing system.
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to guarantee eventual recovery to a legal configuration. A system is called stabilizing (or 
self-stabilizing) when the following two conditions hold:

Convergence: Regardless of the initial state, and regardless of eligible actions chosen for 
execution at each step, the system eventually returns to a legal configuration.

Closure: Once in a legal configuration, the system continues to be in the legal configuration 
unless a failure or a perturbation corrupts the data memory.

17.2 THEORETICAL FOUNDATIONS
Let true be the program of a stabilizing system and Q be the predicate defining a legal 
configuration. Using the notations of predicate transformers introduced in Chapter 5, the 
condition wp(SSS, Q) = true holds for a stabilizing system. The weakest precondition true 
denotes that starting from all possible initial states, stabilizing systems recover to a correct 
or legal configuration. This implies that regardless of how the state is modified by a failure 
or a perturbation, the recovery is guaranteed.

A closely related version is an adaptive system, where the system spontaneously adjusts 
itself by reacting to environmental changes. An example of environment is a variable that 
represents the time of the day. Data centers expect different volumes and patterns of traffic 
during different times of the day and arrange to provision hardware and software resources 
accordingly. A network may compute the shortest path between pairs of nodes regardless of 
node crashes—here, the environment crashed(i) (reflecting the crash failure of node i) is a 
Boolean variable that the network can only read but not modify. The shortest path computa-
tion adapts to the value of crashed(i). Our previous formulation of a stabilizing system did not 
explicitly recognize the role of the environment, but it can be accommodated with a minor 
modification. Let S be a system and e be a Boolean variable representing two possible states 
(true and false) of the environment. To be adaptive, S must adjust its behavior as follows: when 
e is true, S must stabilize to a legal configuration that satisfies predicate Q1, and when e is false, 
S must stabilize to a legal configuration that satisfies predicate Q0. These imply that starting 
from any initial configuration, S must stabilize to the predicate E = (e ∧ Q1) ∨ (¬e ∧ Q0), which 
is formally represented as wp(S, E) = true. This completes the transformation.

Let SSS be a stabilizing system and the predicate Q define its legal configuration. 
Consider a finite behavior, in which the sequence of global states satisfies the sequence 
of predicates: (¬Q, ¬Q, ¬Q, …, Q, Q, Q, Q). This behavior satisfies both convergence and 
 closure. However, a behavior in which the global state satisfies the sequence of predicates 
(¬Q, ¬Q, …, ¬Q, Q, ¬Q, Q, Q) is inadmissible, since the transition from Q to ¬Q via normal 
program actions violates the closure property.

Finally, we address the issue of termination. Termination reflects a configuration when 
the system reaches a legitimate configuration and all guards or actions are disabled. 
Stabilizing systems sometimes relax the termination requirement by allowing infinite 
behaviors that lead the system to a fixed point, where all enabled actions maintain the 
configuration in which Q holds. For our purpose, the behavior (¬Q, ¬Q, …, ¬Q, Q, Q, Q, …) 
with an infinite suffix of states satisfying Q will be considered an acceptable demonstration 
of both convergence and closure.
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17.3 STABILIZING MUTUAL EXCLUSION
Dijkstra’s work [D74] initiated the field of self-stabilization in distributed systems. He first 
demonstrated its feasibility by proposing stabilizing solutions to the problem of mutual 
exclusion on three different types of networks. In this section, we present the solutions to 
two of these versions.

17.3.1 Mutual Exclusion on a Unidirectional Ring

Consider a unidirectional ring of n processes 0, 1, 2, …, n − 1 (Figure 17.2). Each pro-
cess can remain in one of the k possible states 0, 1, 2, …, k − 1. We consider the shared-
memory model of computation: A process i, in addition to reading its own state s[i], can 
read the state s[i − 1 mod n] of its predecessor process i − 1 mod n. Depending on whether 
a predefined guard (which is a Boolean function of these two states) is true, process i may 
choose to modify its own state.

We will call a process with an enabled guard a privileged process or a process holding a 
token. This is because a privileged process is one that can take an action, just as in a token 
ring network, a process holding the token is eligible to transmit or receive data. A legal 
configuration of the ring is characterized by the following two conditions:

Safety: The number of processes with an enabled guard is exactly one.

Liveness: During an infinite behavior, the guard of each process is enabled infinitely often.
A privileged process executes its critical section. A process that has an enabled guard 

but does not want to execute its critical section simply executes an action to pass the privi-
lege to its neighbor. Transient failures may transform the system to an illegal configura-
tion. The problem is to design a protocol, so that starting from an arbitrary initial state, 
the system eventually converges to a legal configuration and remains in that configuration 
thereafter.

Dijkstra’s solution assumed process 0 to be a distinguished process that behaves differ-
ently from the remaining processes in the ring. All the other processes run identical pro-
grams. There is a central scheduler for the entire system. In addition, the condition k > n 
holds. The programs are as follows:

Program ring;
{program for process 0}
do s[0]=s[n − 1]→s[0]:= s[0]+ 1 mod k od
{program for process i ≠ 0}
do s[i]≠s[i − 1]→s[i]:= s[i − 1] od

0 1 2 3 n – 1

FIGURE 17.2 A unidirectional ring of n processes.
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Before studying the proof of correctness of the aforementioned algorithm, we strongly 
urge the reader to study a few sample runs of the aforementioned protocol and observe the 
convergence and closure properties. A configuration in which ∀i, j : s[i] = s[j] is an example 
of a legal configuration.

Proof of correctness

Lemma 17.1

[No deadlock] In any configuration, at least one process must have an enabled guard.

Proof: If every process 1 through n − 1 has a disabled guard, then ∀i > 0, s[i] = s[i − 1]. But 
this implies that s[0] = s[n − 1], so process 0 must have an enabled guard. ◾

Lemma 17.2

[Closure] The legal configuration satisfies the closure property.

Proof: If only process 0 has an enabled guard, then ∀i, j : 0 ≤ i, j ≤ n − 1 : s[i] = s[j]. A move 
by process 0 will disable its own guard and enable the guard for process 1. If only process 
i (0 < i < n − 1) has an enabled guard, then

• ∀j < i : s[j] = s[i − 1]
• ∀k > i : s[k] = s[i]
• s[i] ≠ s[i − 1]

Accordingly, a move by process i will disable its own guard and enable the guard for  process 
(i + 1) mod n. Similar arguments hold when only process (n − 1) has an enabled guard. ◾

As a consequence of Lemmas 17.1 and 17.2, in an infinite computation, the guard of each 
process will be true infinitely often.

Lemma 17.3

[Convergence] Starting from any illegal configuration, the ring eventually converges to a 
legal configuration.

Proof: Observe that every action by a process disables its own guard and enables at most 
one new guard in a different process—so the number of enabled guards never increases. 
Now, assume that the claim is false, and the number of enabled guards remains constant 
during an infinite suffix of a behavior. This is possible if every action that disables an exist-
ing guard enables exactly one new guard.

There are n processes with k(k > n) states per process. By the pigeonhole principle, in 
any initial configuration, at least one element j ∈ {0, 1, 2, …, k − 1} must not be the initial 
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state of any process. Each action by process (i > 0) essentially copies the state of its pre-
decessor, so if j is not the state of any process in the initial configuration, no process can 
be in state j until s[0] becomes equal to j. However, it is guaranteed that at some point, 
s[0] will be equal to j, since process 0 executes actions infinitely often, and every action 
increments s[0] (mod k). Once s[0] = j, eventually every process attains the state j, and the 
system reaches a legal configuration. ◾

The property of stabilization follows from Lemmas 17.2 and 17.3.

17.3.2 Mutual Exclusion on a Bidirectional Array

The second protocol operates on an array of processes 0 through n − 1 (Figure 17.3). We 
present here a modified version of Dijkstra’s protocol, taken from [G93]

In this system, ∀i : s[i] ∈ {0, 1, 2, 3} and is independent of the size of the array. The two 
processes 0 and n − 1 behave differently from the rest—they have two states each. By defi-
nition, s[0] ∈ {1, 3} and s[n − 1] ∈ {0, 2}. Let N(i) designate the set of neighbors of process i. 
The program is as follows:

program four-state;
{program for process i, i = 0 or n − 1}
do ∃j ∈ N(i):s[j]=s[i]+ 1mod 4 → s[i]:= s[i]+ 2 mod 4 od
{program for process i, 0 < i < n − 1}
do ∃j ∈ N(i):s[j]=s[i]+ 1mod 4 → s[i]:= s[i]+ 1 mod 4 od

Proof of correctness
The absence of deadlock can be trivially demonstrated using arguments similar to those 
used in Lemma 17.1. We focus on convergence only.

For a process i, call the processes i + 1 and i − 1 to be the right and the left neighbors, 
respectively. Define two predicates L · i and R · i as follows:

 L i s i s i⋅ ≡ − = +[ ]: [ ] mod1 1 4

 R i s i s i⋅ ≡ + = +[ ]: [ ] mod1 1 4

We will represent L · i by drawing a → from process i − 1 to process i and R · i by drawing 
a ← from process i + 1 to process i. Thus, any process with an enabled guard has at least 
one arrow pointing toward it.

For a process i (0 < i < n − 1), the possible moves fall exactly into one of the seven cases in 
part (a) of Table 17.1. Each entry in the columns precondition and postcondition represents 

0 1 2 n – 2 n – 1

FIGURE 17.3 An array of n processes.
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the states of the three processes (i − 1, i, i + 1) before and after the action by process i. Note 
that x ∈ {0, 1, 2, 3}, and all + operations are mod 4 operations.

Case (a) represents the move when a → is transferred to the right neighbor. Case (e) 
shows the move when a ← is transferred to the left neighbor. Cases (c) and (f) show how 
a → can be converted to a ←, and vice versa. Finally, cases (b), (d), and (g) correspond to 
moves by which the number of enabled guards is reduced. Note that in all seven cases, the 
total number of enabled guards is always nonincreasing.

Part (b) of Table 17.1 shows a similar list for the two processes 0 and n − 1. Case (h) lists 
the states of processes 0 and 1, and case (k) lists the states of processes n − 2 and n − 1. 
Process 0 transforms a ← to a →, and process n − 1 transforms a → to a ←. These two pro-
cesses thus act as reflectors. Once again, the number of enabled guards does not increase.

Lemma 17.4

If the number of enabled guards in the processes 0..i (i < n − 1) is positive, and process i + 1 
does not execute an action, then after at most three moves by process i, the total number of 
enabled guards in the processes 0..i is reduced.

Proof: By assumption, at least one of the processes 0..i has an enabled guard, and process 
i + 1 does not make an action. We will designate the three possible moves by process i as 
move 1, move 2, and move 3. The following cases exhaust all possibilities:

Case 1: If move 1 is of type (a), (b), (d) or (g), the result follows immediately.

Case 2: If move 1 is of type (e) or (f), after move 1, the condition s[i] = s[i + 1] holds. In that 
case, move 2 must be of type (a), and the result follows immediately.

Case 3: If move 1 is of type (c), after the first move, the condition s[i + 1]= s[i] + 1 mod 4 
holds. In this case, move 2 must be of types (b), (e), (f) or (g). If cases (b) and (g) apply, the 

TABLE 17.1 Possible Changes Caused due to an Action by Process i

Case Precondition Postcondition

(a) 0 < i < n − 1
a x + 1 → x, x x + 1, x + 1 → x 
b x + 1 → x ← x + 1 x + 1, x + 1, x + 1
c x + 1 → x, x + 2 x + 1, x + 1 ← x + 2
d x + 1 → x → x + 3 x + 1, x + 1, x + 3
e x,x ← x + 1 x ← x + 1, x + 1
f x + 2, x ← x + 1 x + 2 → x + 1, x + 1
g x + 3 ← x ← x + 1 x + 3, x + 1, x + 1

Case Precondition Postcondition

(b) i = 0 and i = n − 1
h x ← x + 1 x + 2 → x + 1
k x + 1 → x x + 1 ← x + 2
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result follows from case 1. If cases (e) and (f) apply, then we need a move 3 of type (a) as in 
Case 2, and the number of enabled guards in processes 0..i will be reduced. ◾

Lemma 17.4 implies that if there is an enabled guard to the left of a process i, then after a 
finite number of moves by process i, a → appears at its right neighbor i + 1. Using similar 
arguments, one can demonstrate that if there is an enabled guard to the right of process 
i(i > 0), then after a finite number of moves by process i, a ← appears at its left neighbor i − 1.

Lemma 17.5

In an infinite behavior, every process makes infinitely many moves.

Proof: Assume that this is not true, and there is a process j that does not make any move 
in an infinite behavior. By Lemma 17.4 and its follow-up arguments, in a finite number of 
moves, the number of enabled guards for every process i ≠ j will be reduced to 0. However, 
deadlock is impossible. So process j must make infinitely many moves.

Lemma 17.6

[Closure] If there is a single arrow, then all subsequent configurations contain a single arrow.

Proof: This follows from the cases (a), (e), (h), (k) in Table 17.1.
In an arbitrary initial state, there may be more than one → and/or ← in the system. To 
prove convergence, we need to demonstrate that in a bounded number of moves, the 
 number of arrows is reduced to 1. ◾

Lemma 17.7

[Convergence] Program four-state guarantees convergence to a legal configuration.

Proof: We argue that every arrow is eventually eliminated unless it is the only one in the 
system. We start with a →. A → is eliminated when it meets a ← (Table 17.1, case b) or 
another → (Table 17.1, case d). From Lemma 17.4, it follows that every → eventually moves 
to the right until it meets a ← or reaches process n − 1. In the first case, two arrows are 
eliminated. In the second case, the → is transformed into a ← after which the ← eventually 
moves to the left until it meets a → or a ←. In the first case (Table 17.1, case d), both arrows 
are eliminated, whereas in the second case (Table 17.1, case g), one arrow disappears and 
the ← is transformed into a →. Thus, the number of arrows progressively goes down. When 
the number of arrows is reduced to one, the system reaches a legal configuration. 

Figure 17.4 illustrates a typical convergence scenario. Since closure follows from 
Lemma 17.6 and convergence follows from Lemma 17.7, the program four-state guarantees 
stabilization. This concludes the proof.
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17.4 STABILIZING GRAPH COLORING
Graph coloring is a classical problem in graph theory. Given an undirected graph G = (V, E) 
and a set of colors C, node coloring defines a mapping from V → C such that no two adja-
cent nodes have the same color. In this section, we focus on designing a stabilizing algo-
rithm for coloring the nodes of a planar graph using at the most six colors.

Section 10.4 illustrates a distributed algorithm for coloring the nodes of any planar 
graph with at the most six colors, but the algorithm is not stabilizing. In this section, we 
present the stabilizing version of it. Readers should review this algorithm before studying 
the stabilizing version.

The algorithm in Section 10.4.2 has two components. The first component transforms 
the given planar graph into a directed acyclic graph (dag) for which ∀i ∈ V : outdegree(i) ≤ 5. 
The second component performs the actual coloring on this dag. Of the two components, 
the second one is stabilizing, since no initialization is necessary to produce a valid node 
coloring. However, the first one is not stabilizing, since it requires specific initialization 
(all edges were initialized to the state undirected). As a result, the composition of the two 
components is also not stabilizing. Our revised plan here has two goals:

 1. Design a stabilizing algorithm A that transforms any planar graph into a dag for 
which the condition P ≡ ∀i ∈ V : outdegree(i) ≤ 5 holds.

 2. Use the dag-coloring algorithm B from Section 10.4 such that the desired postcondi-
tion Q reflecting a valid six-coloring holds.

If the actions of B do not negate any enabled guard of A, we can use the idea of con-
vergence stairs [GM91] and run the two components concurrently to produce the desired 
coloring. We revisit algorithm B for coloring the dag. Recall that

• The color palette C = {0,1,2,3,4,5}

• c(i) denotes the color of node i

• succ(i) denotes the successors of a node i

• sc(i) = {c(j) : j ∈ succ(i)}

FIGURE 17.4 An illustration of convergence of the four-state algorithm.
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The following coloring algorithm from Section 10.4 works on a dag G′ for which 
∀i ∈ V : outdegree(i) ≤ 5, and produces a valid six-coloring of the dag.

program colorme;
{program for node i}
do ∃j ∈ succ(i):c(i)=c(j)→c(i):= b:b ∈{C\sc(i)} od

To recall how it works, note that the leaves of the dag have stable colors. So after at most one 
round, the predecessors of the leaf nodes will have a stable color. After at most two rounds, 
the predecessors of the predecessors will attain a stable color. In at most |V| rounds, all 
nodes will be appropriately colored.

However, the crucial issue here is the generation of a dag G′ that satisfies the  condition 
P ≡ ∀i ∈ V : outdegree(i) ≤ 5. To find a stabilizing solution, assume that initially the edges 
of G may be oriented in an arbitrary way (instead of being undirected), and the origi-
nal  algorithm of Section 10.4.2 is not designed to handle it! So we present a stabilizing 
 algorithm for dag generation.

Dag-generation algorithm: To represent the edge directions, let us introduce a nonnega-
tive integer variable x(i) for every node i. Let i and j be the ids of a pair of neighboring 
nodes. The relationship between x and the edge directions is as follows:

• i → j iff, x(i) < x(j) or x(i) = x(j) and i < j

• j → i otherwise

Let sx(i) = {x(j) : j ∈ succ(i)}. Then regardless of the initial values of x, the following algo-
rithm A will generate a dag that satisfies the condition ∀ i ∈ V : outdegree(i) ≤5:

program dag;
{program for process i}
do |succ(i)|>5  →  x(i):=  max(sx(i))+ 1 od

As in the coloring algorithm, we assume large grain atomicity, so that the maximum 
element of the set sx(i) is computed atomically. The proof of correctness relies on Euler’s 
polyhedron formula (see [H69]), which was introduced in Chapter 10. Corollary 10.1 
established earlier that every planar graph has at least one node with degree ≤ 5. It 
remains to show that given an arbitrary planar graph and no initial edge direction speci-
fied, the dag-generation algorithm guarantees convergence to a global configuration in 
which the condition ∀i ∈ V : outdegree(i) ≤ 5 holds. 

Lemma 17.8

The dag-generation algorithm stabilizes to a configuration in which the condition 
∀i ∈ V : outdegree(i) ≤ 5 holds.
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Proof (by contradiction): The partial correctness is trivial, that is, if the algorithm 
 terminates, then the condition ∀i ∈ V : outdegree(i) ≤ 5 will hold. So we focus on termina-
tion only. Assume that the algorithm does not terminate. Then there is at least one node j 
that makes infinitely many moves. Every move by j directs all its edges toward j. Therefore, 
between two consecutive moves by node j, at least six nodes in succ(j) must make moves. 
Furthermore, if j makes infinitely many moves, then at least six nodes in succ(j) must also 
make infinitely many moves. Since the number of nodes is finite, it  follows that (1) there 
exists a subgraph in which every node has a degree >5 and (2) the nodes of this sub-
graph make infinitely many moves. However, since every subgraph of a planar graph is 
also a  planar graph, and there is no planar graph in which the degree of every node is >5 
(Corollary 10.1), condition leads to a contradiction. ▪

The combination of the two programs is straightforward. In program colorme, it 
may be impossible for node i to choose a value for c(i) when |succ(i)| > 5, since the 
set C\sc(i) may become empty. To avoid this situation, strengthen the guard to

succ i j succ i c i c j( ) ( ): ( ) ( )>( ) ∧ ∃ ∈ =( )5 , without changing the corresponding action. The 
final version is shown as follows:

program six-coloring;
{program for node i}
do {Component A: dag generation action}
|succ(i)|>5  →  x(i):=  max(sx(i))+ 1
{Component B: coloring action}
[](|succ(i)|≤  5) ∧ (∃j ∈ succ(i): c(i) = c(j)) → c(i):=  b:b ∈ {C \sc(i)}
od

Since the predicate of component A is closed under the actions of component B, the 
 concurrent execution of these actions will disable all guards, leading to a configuration 
that satisfies

 P i V succ i≡ ∀ ∈ ≤: | ( )| 5

and

 Q i j V j succ i c i c j≡ ∀ ∈ ∈ ≠, : ( ), ( ) ( )

A drawback of the aforementioned solution is the unbounded growth of x.

17.5 STABILIZING SPANNING TREE PROTOCOL
Spanning trees have important applications in routing and multicasts. When the network 
topology is static, a spanning tree can be constructed using the probe-echo algorithm 
from Section 10.3.1 or some other algorithm. However, in real life, network topology con-
stantly changes as nodes and links fail and come up, or their states are corrupted, affect-
ing the spanning tree. Following such events, the spanning tree has to be reconstructed 
to maintain service.
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In this section, we present a stabilizing algorithm for constructing a spanning tree, 
 originally proposed by Chen et al. [CYH91]. The algorithm works on a connected undi-
rected graph G = (V, E) and assumes that failures do not partition the network. Let |V| = n. 
A distinguished process r is chosen as the root of the spanning tree. Each process picks a 
neighbor as its parent P, and we denote it by drawing a directed edge from i to P(i). By defi-
nition, the root does not have a parent. The corruption of one or more P-values can create 
a cycle. To detect a cycle and restore the graph to a legal configuration, each process uses 
an integer variable L(0 ≤ L ≤ n). Call L the level of a process—it defines its distance from 
the root via the tree edges. By definition, L(r) = 0. Denote the set of neighbors of process i 
by N(i). In a legitimate configuration, (1) ∀i ∈ V : i ≠ r :: L(i) < n and (2) L(i) = L(P(i)) + 1.

Once the configuration becomes illegal, all processes (except the root) execute actions to 
restore the spanning tree. One action preserves the invariance of L(i) = L(P(i)) + 1 regardless of 
the integrity of the relation P. However, if L(P(i)) ≥ n − 1 (which reflects something is wrong), 
then process i sets L(i) to n, looks for a neighbor j such that L(j) < n − 1, and chooses j as its 
new parent. Note that the condition L(i) = n is possible either due to a corruption of the value 
of L(i) or due to the directed edges forming a cycle. Figure 17.5a shows a spanning tree, and 
Figure 17.5b shows the effect of a corrupted value of P(2)—a cycle is formed consisting of the 
nodes 2, 3, 4, 5 and the directed edges connecting them with their parents. Because of this cycle, 
when each node i updates L(i) to L(P(i)) + 1, the values of L(2), L(3), L(4), L(5) eventually reach 
the maximum value n = 6. For recovery, a node i with L(i) = 6 will look for a neighbor with 
level <5 to designate it as its new parent. In our example, let node 2 choose node 1 as P(2) (since 
L(1) = 1). Following this, nodes 3, 4, 5 update their levels, and the stabilization is complete.

program stabilizing spanning tree;
{program for each node i ≠ r}
do (L(i) ≠ n) ∧ (L(i) ≠ L(P(i)) + 1)∧(L(P(i))≠ n) → L(i):= L(P(i))+ 1 (1)
[] (L(i) ≠ n) ∧ (L(P(i) = n)) → L(i):= n (2)
[] (L(i) = n) ∧ (∃k ∈ N(i): L(k) < n − 1) → P(i):= k;L(i):= L(k)+ 1 (3)
od
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FIGURE 17.5 (a) A spanning tree with correct values of L and P for each node. (b) P(2) is corrupted 
and a cycle is created. The edge (2, 5) is not well formed.
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Correctness proof
We follow the arguments from [CYH91]. Define an edge from i to P(i) to be well formed, 
when L(i) ≠ n, L(P(i)) ≠ n, and L(i) = L(P(i)) + 1. In any configuration, the nodes and the 
well-formed edges form a spanning forest. Delete all edges that are not well formed and 
designate each tree T in the forest by T(k), where k is the smallest value of the level of a node 
in the tree. A single node with no well-formed edge incident on it represents a degenerate 
tree. In Figure 17.5b, there are two trees: T(0) = {0, 1} and T(2) = {2, 3, 4, 5}.

We now examine how these multiple trees combine into a single spanning tree via the 
actions of the algorithm. Define a tuple F = (F(0), F(1), F(2), …, F(n)), where F(k) counts 
the number of T(k)s in the spanning forest. In Figure 17.5b, F = (1, 0, 1, 0, 0, 0). Define a 
lexicographic order (>) between a pair of tuples F and F′ as follows:

 F F F F> ′ ≡ > ′( ) ( )0 0

or

 ∃ > > ′ ∧ ∀ < = ′j F j F j i j F i F i0 : ( ) ( ) : ( ) ( )

With n nodes, the maximum value of F is (1, n − 1, 0, 0, …, 0) and the minimum value is 
(1, 0, 0, …, 0) that represents a single spanning tree rooted at node 0.

The important thing to observe here is that with each action of the algorithm, F decreases 
lexicographically. With action 1, node i combines with an existing tree, so F(i) decreases, 
but no other component F(j), j < i decreases in value. With action 2, node i becomes a new 
tree with a single node, F(n) increases, but F(L(i)) decreases, and F(L(j)), L(j) > L(i) may 
increase. Therefore, F decreases. Finally, with action 3, F(n) decreases, but all other compo-
nents of F remain unchanged. So F decreases.

With the repeated application of the three actions, F decreases monotonically until it 
reaches the minimum value (1, 0, 0, …, 0), which represents a single spanning tree rooted 
at node 0. ◾

17.6 STABILIZING MAXIMAL MATCHING
Matching is a well-studied problem in graph theory. Given an undirected connected graph 
G = (V, E), a matching M is a subset of the set of edges E, such that no two edges in M share 
a common node. A matching M is called maximal, if no other edge can be added to the 
set M. If (i, j) ∈ M, then call the nodes i and j partners of each other. To compute maximal 
matching, each node i maintains a variable partner whose value has to be chosen from its 
neighbor set N(i), or it can be ⊥; the latter indicates that node i does not have a partner. 
(i, j) ∈ M implies partner(i) = j (denoted by i → j) and partner(j) = i (denoted by j → i). 
In an arbitrary initial configuration, the values of the partner variables may be arbitrary. 
A stabilizing maximal matching algorithm should lead the system from an arbitrary initial 
configuration to a configuration in which the set M is correctly generated and becomes 
maximal. We present here an algorithm due to Hsu and Huang [HH92].
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The state S(i) of a node i can belong to one of the following five categories:

 1. S(i) = waiting ⇒ (i → j) ∧ (j → ⊥).

 2. S(i) = matched ⇒ (i → j) ∧ (j → i).

 3. S(i) = chaining ⇒ (i → j) ∧ (j → k) ∧ (k ≠ i).

 4. S(i) = dead ⇒ i → ⊥, but every neighbor of node i is in the matched state.

 5. S(i) = free ⇒ i → ⊥, but at least one neighbor of node i is not matched.

In a legal configuration, the state of each node is either matched or dead. The stabilizing 
maximal matching algorithm is based on three rules.

program stabilizing maximal matching
{program for process i}
do
(i  →  ⊥)  ∧  (∃k  ∈  N(i):  k  →  i)  →  i chooses k (1)
(i  →  ⊥) ∧ (∀j  ∈  N(i): j did not choose i) ∧ (∃k  ∈  N(i): k  →  ⊥) →  i chooses k (2)
(i  →  j)  ∧  (j  →  k)  ∧  (k  ≠  i)  →  i rejects j and chooses ⊥ (3)
od

Hsu and Huang [HH92] uses a variant function to prove convergence to a legal configu-
ration. First of all, observe that if the system is not in a legal configuration, then at least one 
of the guards in the algorithm must be true. Define c, d, f, m, w to be the number of nodes 
in the states chaining, dead, free, matched, and waiting, respectively. Choose the tuple F = 
(m + d, w, f, c) as the variant function. The claim is that F will always increase lexicographi-
cally after each of the actions 1–3 of the algorithm, until a legal configuration is reached:

• Action 1 matches i with j—this increases the value of m by 2. It is possible that due to 
this action, some neighbors of i or j change their state from free to dead. As a result, 
d never decreases, although f can decrease, so F increases.

• Action 2 changes the state of i from free to waiting, so w increases by 1, while f 
decreases by 1. Therefore, F increases.

• Action 3 has two possible consequences: (a) If initially k → l (l ≠ j or i), then i changes 
its state from chaining to dead or free (so c decreases by 1, but d or f increases by 1). 
Therefore, F increases. (b) If initially k → i, then the state of k changes from chaining 
to waiting, but the state of i changes from chaining to free (so c decreases by 2, but w 
or f increases by 1). Therefore, F increases.

The maximum value that F can attain is (n, 0, 0, 0)—at this state, the system is in a legal 
configuration. Since the closure property is trivial, the proposed algorithm for maximal 
matching is stabilizing.
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17.7 DISTRIBUTED RESET
Reset is a general technique for restoring a distributed system to a predefined legal con-
figuration from any illegal configuration caused by data corruption or coordination loss. 
While distributed snapshot correctly reads the global state of a system, distributed reset 
correctly updates the global state to a designated value without freezing the application. 
Reset can be used as a general tool for designing stabilizing systems in the following way: 
Any process can take a snapshot of the system from time to time, and if the global state 
turns out to be illegitimate, the process can reset the system to a legal configuration.

To realize the nontriviality of distributed reset, consider that a system of n processes, each 
with an integer variable x. Let x[i] be the value of the x variable of process i. Consider resetting 
the system to a global state ∀i : x[i] = 0. Since the operation is not atomic, first, let one process reset 
x to 0. By the time another process sets its x to 0, the value of x of the previous process may have 
changed based on messages received by its from other processes. By the time the last process has 
reset its x to 0, the states of the earlier processes may have changed in arbitrary ways. Whether 
the resulting global state is reachable from the reset state via a legal computation is debatable.

In [AG93], Arora and Gouda proposed an algorithm for distributed reset on a system 
of n processes 0, 1, 2, …, n − 1. They assume that in addition to data memory corruption, 
processes can fail by stopping and fail-stop failures can be detected, but process failures do 
not partition the system. The system topology is defined in terms of nonfaulty nodes only. 
The components of a reset system consist of two layers of actions, which are distinct from 
the main application (called the application layer). The two layers are defined as follows:

Spanning tree layer: Processes first elect a leader, which is a nonfaulty process with the larg-
est id. With this leader as the root, a spanning tree is constructed. All communications in 
the reset system take place via the tree edges only.

Wave layer: Processes detect inconsistencies and send out requests for reset. These requests 
propagate to the root along the tree edges. The root subsequently sends a reset wave down 
the tree edges to reset the entire system.

The wave layer does not influence the progress of the spanning tree construction, so the 
convergence stairs rule guarantees that the concurrent execution of the action of these two 
layers guides the reset actions to eventually reach the nodes at the correct time. The actions 
of the individual layers are described in the following:

Spanning tree layer protocol: This protocol is very similar to the stabilizing spanning tree con-
struction protocol described in the previous section, with the added factor that it also guaran-
tees that the process with the largest id is selected as the root. Each process i has three variables:

 1. root(i) represents the root of the tree, and in a legal configuration, root(i) ≥ 1.

 2. P(i) represents the parent of node i. Its range is {i} ∪ N(i), where N(i) is the set of 
neighbors of i. If i is the root node, then P(i) = i.

 3. d(i) represents process i’s shortest distance from the root. When i is the root node, 
d(i)  = 0, and in a legal configuration, d(i) = d(P(i)) + 1. In a well-formed tree, 
∀i : d(i) ≤ n − 1, so d(i) > n − 1 will indicate a faulty value of d(i).



380   ◾   Distributed Systems: An Algorithmic Approach

The program for the spanning tree layer is as follows:

{Spanning tree layer: program for process i}
do (root(i)  <  i)∨
 P(i)=  i  ∧  (root(i)  ≠  i∨d(i)  ≠  0)∨
 P(i)  ∉  {i} ∪ N(i)  ∨  d(i)≥  n →root(i):=  i; P(i):=  i; d(i)  =  0

[] (d(i)  <  n)  ∧  (P(i)  =  j)  ∧  (j  ∈  N(i))∧
 (root(i)  ≠  root(j)  ∨  d(i)  ≠  d(j)+1) →root(i):=  root(j); d(i):=  d(j)  +  1

[] ∃j ∈ N(i):(root(i)  <  root(j)  ∧  d(j)  <  n)∨
 (root(i)  =  root(j)  ∧  d(i)  >  d(j)  +  1) →root(i):=  root(j); P(i):=  j;
  d(i):=  d(j)  +  1
od

The first rule resolves local inconsistencies. If there is a cycle in the initial graph, then 
the repeated application of d(i): = d(P(i)) + 1 bumps d(i) up to n that enables the first guard. 
This can also happen due to a bad initial value of d(i). The corresponding action prompts 
the process to designate itself as the root, and the cycle is broken if there is one. The second 
rule enforces the condition d(i): = d(P(i)) + 1 and corrects the value of root(i). Finally, the 
third action sets the value of d(i) to the shortest distance of node i from the root.

Wave layer protocol: The wave layer protocol uses the spanning tree to perform the reset opera-
tion. Once a node locally detects an illegal configuration, it initiates a request for reset that 
propagates up the spanning tree edges to the root node. The root, upon receiving such a request, 
initiates a reset command that propagates down the spanning tree to the leaf nodes. Each pro-
cess I has a state variable s(i) that can have three possible values: normal, initiate, and reset:

• s(i) = normal represents the failure-free mode of operation for process i.

• s(i) = initiate indicates that process i has requested a reset operation. The request 
eventually propagates to the root, which then starts the reset wave.

• s(i) = reset implies that process i is now resetting the application program. The root, 
upon receiving the initiate command, initiates a reset command that propagates via 
the children toward the leaves of the spanning tree. Following the completion of the 
reset operation, the leaf nodes return to the normal state, and their parents follow 
suit, so that all the processes return to their normal states.

The wave layer uses a nonnegative integer variable seq that tags a specific round in the 
reset operation. The steady state of the wave layer satisfies the predicate steady(i) for every i 
(Figure 17.6), which corresponds to the following two conditions:

• s(P(i)) ≠ reset ⇒ s(i) ≠ reset ∧ seq(P(i)) = seq(i)

• s(P(i)) = reset ⇒ s(i) ≠ reset ∧ seq(P(i)) = seq(i) + 1 ∨ seq(P(i)) = seq(i)
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The program for process i in the wave layer is as follows:

(Wave layer: program for process i}
do s(i)= normal ∧ ∃j ∈ N(i):P(j)= i ∧ s(j) = initiate → s(i):= initiate
[] s(i)  :=  initiate ∧ P(i) = i → s(i):= reset; seq(i):=  seq(i)+  1;
 Reset the application state at node i
[] s(i)≠reset ∧ s(P(i)) = reset ∧ seq(P(i)) = seq(i)+  1  →
 s(i):= reset; seq(i):= seqP(i);
 Reset the application state at node i
[] s(i)=reset ∨ ∀j ∈ N(i): P(j) = i: s(j) ≠ reset ∧ seq(i) = seq(j) →
  s(i):= normal
[] ¬steady(i) → s(i):= s(P(i)); seq(i):= seq(P(i))
od

While the first four actions implement a diffusing computation, the last action restores the 
wave layer to a steady state. In the example configuration of Figure 17.6, the reset will be 
over when the condition ∀i : seq(i) = 3 ∧ s(i) = normal holds. The proof of correctness of 
the composition of the two layers relies on the notion of convergence stairs and is formally 
described in [AG93].

Application layer protocol: The application layer of process i is responsible for  requesting the 
distributed reset operation* by setting s(i) to reset. Any node i for which s(i) = reset resets the 
application at that node. In addition, the protocol needs to ensure that when the reset opera-
tion is in progress, no communication takes place between the nodes that have been reset 

* We assume that the application periodically runs a detection algorithm to decide this.
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FIGURE 17.6 A steady state of the wave layer: The reset wave with seq = 3 has made partial  progress. 
Node 4 now initiates a fresh request for reset.
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in the current round and the nodes that are yet to be reset. To enforce this, a process j will 
accept a message from process i, only when seq(i) = seq(j). The rationale is that the resetting 
of the local states of the two processes i and j must be concurrent events—however, if a mes-
sage is allowed between i and j after i is reset but j is not, a causal chain (i is reset π i sends a 
message to j π j receives it ≺ j is reset) can result between the two local resets.

The role of seq is to distinguish between nodes that have been reset and nodes that are 
yet to be reset during the current round of the wave layer. While the proposed algorithm 
reflects an unbounded growth of seq, it is sufficient to limit the range of seq to {0, 1, 2} and 
replace the operation seq(i) :=  seq(j) + 1 in the wave layer by seq(i) :=  seq(j) + 1 mod 3.

17.8 STABILIZING CLOCK PHASE SYNCHRONIZATION
We revisit the problem of synchronizing the phases of a system of clocks ticking in unison. 
The goal is to develop a protocol that will guarantee that regardless of the starting con-
figuration, the phases of all the clocks eventually become identical and remain identical 
thereafter. Recall that Chapter 6 describes such a protocol—it is a stabilizing protocol for 
synchronizing the phases of an array of clocks ticking in unison (Section 6.5). The protocol 
uses three-valued clocks, and each clock ticks as 0, 1, 2, 0, 1, 2, … (O(1) space complexity 
means that the solution is scalable). The solution has subsequently been generalized to 
work on any acyclic network of clocks, as described in [HG95]. Such a solution has two 
drawbacks: (1) It uses coarse-grained atomicity, which implies that in one atomic action, a 
process can read the states of all its neighbors regardless of the size of the neighborhood 
(clearly this is unrealistic), and (2) the solution fails to work on cyclic topologies. In this 
section, we present a different protocol for synchronizing the phases of a network of clocks. 
This protocol, originally described by Arora et al. in [ADG91], stabilizes the system of 
clocks under the weaker system model of fine-grained atomicity: In each step, every clock 
in the network checks the state of only one of its neighbors and updates its own state if nec-
essary. Note that as a process reads the state of one neighbor, the state of another neighbor 
may change. Apart from working under fine-grained atomicity, another advantage of the 
protocol is that it works on cyclic topologies too, although the space complexity per process 
is no more constant.

Consider a network of clocks whose topology is an undirected graph. Each clock c is an 
m-valued variable in the domain 0.. m − 1. Let N(i) denote the set of neighbors of clock i 
and δ = |N(i)| represent the degree of node i. Define a function next on the neighborhood 
of a process i: in each step, next N(i) will return a new neighbor id, and δ successive appli-
cations of next return the starting neighbor. Each clock i executes the following protocol:

program clock synchronization
{program for clock i, j is a neighbor of i}
do true  →  c(i):=  min{c(i),   c(j)}  +  1 mod m;
  j:= next{N(i)}
od

Each clock i will scan the states of its neighbors in a cyclic order and fall back with the value 
of clock j if c(i) > c(j); otherwise it will keep ticking as usual.
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To understand the convergence mechanism of the protocol, consider a clock j whose 
value c(j) is the smallest of all clock values in the current configuration. We will call j an 
anchor node. Note that the anchor node may not be unique. In each step, c(j) is  incremented, 
and in at most δ steps, each neighbor of j sets its clock to c(j). Figure 17.7 shows a sample 
step of the protocol.

It appears that eventually every clock k will set c(k) to c(j) and the system will stabilize. 
The argument is sound if the clocks are unbounded. However, with bounded clocks, there 
is one catch—if the value of c(i) for some clock i reaches the maximum value (m − 1), then 
at the next step, it may roll back from (m − 1) to 0. As a result, the neighbors of clock i 
will not follow previous anchor node j but start following clock i, throwing the issue of 
 stabilization wide open.

One can argue that from now on, clock i will act as the new anchor until all clocks set 
their values to that of clock i. But in order to prevent the occurrence of the previous sce-
nario before the system of clocks stabilizes, the condition m > 2δmaxD must hold, where 
δmax is the maximum degree of a node and D is the diameter of the graph. This guarantees 
that the clock farthest from the anchor clock will be able to set its value to that of the anchor 
before any clock rolls over to 0. The stabilization time for this protocol is 3δmaxD. A formal 
proof of the protocol and the analysis of its time complexity are available in [ADG91].

17.9 CONCLUDING REMARKS
In modern large-scale distributed systems, the principle of spontaneous recovery  without 
external help has received significant attention. Such systems are supposed to take care 
of themselves as far as possible. A number of related ideas conforming to the basic prin-
ciple of self-management are becoming popular: These include self- organization, self-
optimization, and self-healing. The distinction among these different concepts is somewhat 
blurry. Stabilization guarantees recovery from arbitrary initial states and handles the 
corruption of all state variables—in contrast, self-organizing systems appear to restore 
the system functionality when processes join and leave a distributed system. A distrib-
uted system may be self-organizing but may not be self-stabilizing: An example is the 
P2P network Chord [SML  +  02]. A collection of such self-management properties will 
enable computer systems to spontaneously regulate themselves much in the same way 
our autonomic  nervous system regulates and protects our bodies. This is the essence of 
autonomic  computing. Mimicking the behavior of autonomic nervous systems calls for a 
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FIGURE 17.7 A sample step of the [ADG91] clock synchronization protocol: (a) initial configura-
tion—an arrow from j to k indicates that clock j is now comparing its value with clock k. (b) The 
updated clock values after one step.
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large assortment of techniques. For example, systems that are prone to crash frequently 
can be given a longer lease of life, via proactive microreboot [CKF + 04] of the critical 
components prior to the anticipated crash.

Katz and Perry [KP89] described a generic method of transforming any distributed sys-
tem into a stabilizing one using the following approach: (1) Start with a traditional design, 
(2) allow a node to collect the global state and check whether the configuration is legal or 
not, and (3) if the configuration is illegal, reset the system to a legal configuration. This 
approach takes into account the possibility of additional failures during the steps (2) and 
(3) by taking repeated snapshots. As long as such failures are not perpetual, eventually the 
system is restored to a legal configuration.

An interesting observation in many stabilizing systems is that even if a single process 
undergoes a transient failure, a large number of processes may be corrupted before the 
system recovers to a legal configuration. As an example, in the spanning tree protocol, the 
corruption of the parent variable of a single process affects the routing performance of a 
large number of processes, and the recovery can take O(n2) time. Ideally, recovery from a 
single failure should be local and should take O(1) time. This guarantee is known as fault 
containment and is a desirable property of all stabilizing systems. Another closely related 
refinement of the stabilization property is superstabilization—a superstabilizing algorithm 
guarantees fast recovery from a single change in the network topology, like the addition or 
the deletion of an edge or node in the network. The implementation of fault containment 
or superstabilization needs extra work.

Finally, although stabilizing systems guarantee recovery, it is impossible to detect 
whether the system has reached a legal configuration, since any detection mechanism itself 
is prone to failures leading to a false conclusion. Nevertheless, the ability of spontaneous 
recovery from state variable corruption, changing network topology, or changing environ-
ments makes stabilizing and adaptive distributed systems an important area of study in 
fault-tolerant distributed systems.

17.10 BIBLIOGRAPHIC NOTES
The paper [D74] by Dijkstra initiated the field of stabilization. For this work, Dijkstra 
received the most influential paper award from the Principles of Distributed Computing 
(PODC) in 2002, and in the same year, the award was named after him. Lamport in his 
PODC invited address of 1982 [L82] described this work as “Dijkstra’s most brilliant work.” 
The paper has three algorithms for stabilizing mutual exclusion, of which the first one 
appears in this chapter. The modification of his second algorithm is due to Ghosh [G93]. 
Dijkstra [D74] contains a third algorithm that works on a bidirectional ring and uses three 
states per process. Dijkstra furnished a proof of it in [D86]. The planar graph-coloring algo-
rithm follows the work of Ghosh and Karaata [GK93]. Chen et al. [CYH91] presented the 
spanning tree construction algorithm. The maximal matching algorithm is due to Hsu and 
Huang [HH92]. Arora and Gouda [AG94] proposed the algorithm for distributed reset. 
Arora et al. [ADG91] presented the stabilizing clock synchronization algorithm. Herman’s 
PhD thesis [H91] provides a formal foundation of adaptive distributed systems—a  summary 
appears in [GH91]. Ghosh et al. studied fault containment [GGHP96, GGHP07]—a more 
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comprehensive treatment of the topic can be found in Gupta’s PhD thesis [G96a]. Dolev 
and Herman [DH97] introduced superstabilization. Dolev’s book on self-stabilization 
[D00] is a useful resource covering a wide range of stabilization algorithms.

EXERCISES
17.1  Revisit Dijkstra’s mutual exclusion protocol on a unidirectional ring of size n and 

compute the maximum number of moves required to reach a legal configuration.
17.2  Consider Dijkstra’s stabilizing mutual exclusion protocol on a unidirectional ring 

of size n with k states per process. Show that if k = 2 and n = 4, then the system may 
never converge to a legal configuration. To demonstrate this, you need to specify an 
initial configuration that is illegal and a sequence of moves that brings the system 
back to the starting configuration.

17.3  Consider a bidirectional ring of n processes numbered 0 through n − 1. Each  process 
j has a right neighbor (j + 1) mod n and a left neighbor (j − 1) mod n. Each process in 
this ring has three states 0, 1, 2. Let s[j] denote the state of process j. These processes 
execute the following program:

{process 0} do s[0]  +  1 mod 3  =  s[1]  →  s[0]:=  s[0]  −  1 mod 3 od
{process n  −  1} do s[0]  =  s[n  −  2]  ∧  s[n  −  2]  ≠  s[n  −  1]  −  1 mod 3  →

 s[n  −  1]:=  s[n  −  2]  +  1 mod 3 od
{process j:0  <  j  <  n  −  1}
 do s[j]  +  1 mod 3  =  s[j  +  1]  →  s[j]:=  s[j  +  1]
 [] s[j]  +  1 mod 3  =  s[j  −  1]  →  s[j]:=  s[j  −  1]
 od

 a.  Show that the aforementioned protocol satisfies all the requirements of stabi-
lizing mutual exclusion.

  (See [D86] for a proof of correctness but try to do your own analysis first.)
 b.  Show that the worst-case stabilization time of the aforementioned protocol is 

O(n2).
17.4  Figure 17.8 shows a network of four processes. The state s[i] of each process i is either 

0 or 1.

0

1

2

3

FIGURE 17.8 A network of four processes: Each process has two states 0, 1.
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These processes execute the following programs:

{process 0}: do s[0],s[1]  =  (1,0)  →  s[0]:=  0 od
{process 1}: do s[1],s[2],s[3]  =  1,1,0  →  s[1]:=  0 od
{process 2}: do s[0],s[1],s[2]  =  1,1,0  →  s[2]:=  1 od
{process 3}: do s[2],s[3] = 1,1  →  s[3]:=  0 od

Verify if the system of processes implements a stabilizing mutual exclusion  protocol. 
What is the behavior of the system in a legal configuration? [See G91]

17.5  Design a stabilizing algorithm for electing a leader on a unidirectional ring of 
 processes. Processes have distinct ids. Each process k maintains a leader variable 
L(k). In a legal configuration, L(k) = max, where max is the largest id of a nonfaulty 
process existing in the ring. Note that the values of L(k) in different processes may 
be badly initialized—this includes the ids of nonexistent processes.

Provide a correctness proof to justify why your solution will work.
17.6  In an undirected graph G = (V, E), the eccentricity of a node i ∈ V is the maximum 

shortest path distance of i from any other node of the graph. A node with minimum 
eccentricity is called a center of G.

Design a stabilizing algorithm for finding the center of a tree. Whenever the 
topology of the tree changes, the center will spontaneously shift itself to the appro-
priate node. Your algorithm should start from an arbitrary initial state and reach a 
fixed point that satisfies the unique predicate for the center. Remember that some-
times a tree can have two centers. (See [BGK+99].)

17.8  Given a strongly connected directed graph and a designated node k as the root, 
design a self-stabilizing algorithm to generate a BFS tree. In a legal configuration, 
each nonroot node i must identify a parent node p(i) from its neighborhood N(i) 
such that the node i can send a message to the root using the smallest number 
of hops. In an arbitrary initial configuration, these parent variables may be badly 
initialized.

17.9  Consider a linear array of processes numbered 0 through n − 1. Let s[j] denote the 
state of process j and N(j) denote the neighbors of node j. By definition, each process 
has only two states: s[j] ∈ {0, 2} if j is even, and s[j] ∈ {1, 3} if j is odd. Starting from 
an arbitrary initial state, each process j executes the following program:

 do ∀k: k ∈ N(j): s[k] = s[j] + 1 mod 4 → s[j] := s[j] + 2 mod 4 od

If processes execute their actions in lock-step synchrony (i.e., at each step, every 
process with an enabled guard executes its action), then describe the steady-state 
behavior of the system.
(Hint: Observe that in the steady state, (1) no two neighboring processes execute their 
actions at the same time and (2) maximum parallelism is reached, that is, at least 
⌊n/2⌋ processes will change their states simultaneously. Argue why this will be so.)
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17.10  Let G = (V, E) represent the topology of a network of wireless terminals: Here, V is a 
set of nodes representing terminals, and E is the set of edges between them. An edge 
between a pair of terminals indicates that one is within the communication range 
of the other and such edges are bidirectional. The local clocks of these terminals are 
perfectly synchronized.

One problem in such a system is the collision in the MAC layer, which is tradi-
tionally avoided using the RTS-CTS signals. Now consider a different solution of 
collision avoidance using TDMA: Let processes agree to a cyclic order of time slots 
of equal size, numbered 0, 1, 2, …, δ − 1, where δ is the maximum degree of a node. 
The goal now is for each process to pick up a time slot that is distinct from the slots 
chosen by its neighbors, so that across any edge, only one terminal can transmit at 
any time.

Design a stabilizing TDMA algorithm for assigning time slots to the different 
nodes, so that no two neighboring nodes have the same time slot assigned to it. 
Explain how your algorithm works and provide a proof of correctness.

17.11  Revisit the clock phase synchronization protocol due to Arora et al. [ADG91]. 
Illustrate with an example that single faults are not contained, that is, a single faulty 
clock can force a large number of nonfaulty clocks to alter their states to incorrect 
values before stability is restored.

17.12  Some people believe that the property of stabilization is too demanding, since it 
always requires the system to recover from arbitrary configurations and no assump-
tion can be made about initial state. Consider softening this requirement where we 
may allow a fraction of the variables to be initialized, while the others may assume 
arbitrary values. Call it assisted stabilization.

Show that Dijkstra’s stabilizing mutual exclusion protocol on a unidirectional 
ring of size n will eventually return the ring to a legal configuration when (1) there 
are (n − k + 1) states (numbered 0 through n − k) per process, (2) the states of the 
processes 0 through k are initialized to 0, and (3) the remaining processes start from 
arbitrary initial states.
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C h a p t e r  18

Distributed Discrete-Event 
Simulation

18.1 INTRODUCTION
Simulation is a widely used tool for monitoring and forecasting the performance of real 
systems. Before building the system, experiments are performed on the simulated model to 
locate possible sources of errors, which saves money and effort, prevents possible malfunc-
tion, and boosts confidence. In the area of networking, network simulators are very popu-
lar and widely used. VLSI designers use circuit simulation packages like SPICE to study 
the performance before actually building the system. Sensitive safety-critical applications 
invariably use simulation, not only to verify the design but also to find ways to deal with 
catastrophic or unforeseen situations. Airlines use flight simulators to train pilots. Most 
real-life problems are large and complex, and they take an enormous amount of time when 
run sequentially on a single processor. Distributing the total simulation among several 
processors has the potential to reduce the run time. Although it is conceptually easy, dis-
tributed simulation poses interesting synchronization challenges. In this chapter, we will 
study some of these challenges.

18.1.1 Event-Driven Simulation

We distinguish between the real system (often called the physical system) and the simulated 
version that is expected to mimic the real system. The correctness of simulation requires 
that the simulated version preserve the temporal order of events in the physical system. 
Considering the physical system to be message based, a typical event is the sending of a 
message m at a time t. In the simulated environment, we will represent it by a pair (t, m). 
The fundamental correctness criteria in simulation are as follows:

Criterion 1: If the physical system produces a message m at time t, then the simulated 
version must schedule an event (t, m).

Criterion 2: If the simulated version schedules an event (t, m), then the physical system 
must generate the message m at time t.
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Central to an event-driven simulation are three data components: (1) a clock that tracks 
the progress of simulation, (2) the state variables that represent the state of the physical 
system, and (3) an event list that records pending events along with their start and finish 
times. Initially, clock = 0, and the event list contains those events that are ready to be sched-
uled at the beginning. Events are added to the event list when the completion of an event 
triggers new events. Similarly, events are deleted from the event list, when the completion 
of the current event disables another anticipated event originally scheduled for a later point 
of time. The following loop is a schematic representation of event-driven simulation:
 {Event-driven simulation: basic steps of a process}
do <termination condition> = false →
 Simulate event (t, m)with the smallest time t from the event list;
 Update the event list (by adding or deleting events, as appropriate);
 clock: = t;
od

As an example of discrete-event simulation, consider Figure 18.1. The customers enter the 
bank through door 1. A receptionist (A) of a bank receives customers C1, C2, C3, … and 
directs them to one of two tellers W1 and W2 who is not busy. If both tellers are busy, then 
the customer waits in a queue.

Each customer takes a fixed time of 5 min to complete the transactions. Eventually, they 
leave via door 2. Assuming three customers C1, C2, and C3 arrive at A at times 1, 3, and 5, 
the events till time 6 are listed in the Table 18.1. Here, the notation Cn @ v will represent 
the fact customer Cn is currently at node v.

As another example, consider the following events in a battlefield. An enemy convoy is 
scheduled to cross a bridge at 9:30 a.m., and an aircraft is scheduled to bomb the bridge and 

TABLE 18.1 Partial List of Events in the Bank

No. Time Event Comment 
1 1 C1 @ A
2 1 C1 @ W1 W1 will be busy till time 6.
3 3 C2 @ A
4 3 C2 @ W2 W2 will be busy till time 8.
5 5 C3 @ A Both tellers are busy.
6 6 C3 @ W1 Now, C3 is sent to W1.

Door 1 Door 2Receptionist

Teller 1

Teller 2

Source SinkA

W2

W1

FIGURE 18.1 Two bank tellers in a bank.
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destroy it at 9:25 a.m. on the same day. Unless we simulate the events in temporal order, we 
may observe the convoy crossed the bridge—something that will not happen in practice. 
This leads to the third requirement in event-driven simulation: The progress of simulation 
must preserve the temporal order of events. An acceptable way of enforcing the temporal 
order is to respect causality. Criterion 3 elaborates this:

Criterion 3 (Causality requirement) If E1 and E2 are two events in the physical system, and 
E1 ≺ E2, then the event E1 must be simulated before the event E2.

Two events that are not causally ordered in the physical system can be simulated in any 
order. In sequential simulation, criterion 3 is trivially satisfied if the pending event with the 
lowest time is always picked for simulation. In distributed environments, timestamps can be 
used to prevent the violation of causal order. If T1 and T2 are the timestamps of the events 
E1 and E2, respectively, and T1 < T2, then E2 cannot be causally ordered before E1—so 
simulating events in timestamp order is a sufficient condition for preserving criterion 3.

18.2 DISTRIBUTED SIMULATION
18.2.1 Challenges

The task of simulating a large system using a single process is slow due to the large number of 
events that needs to be taken care of. For speedup, it makes sense to divide the simulation job 
among a number of processes. We will distinguish between physical processes (PPs) and LPs. 
The real system to be simulated consists of a number of PPs where events occur in real time. 
The simulated system consists of a number of LP—each LP simulates one or more PPs. In an 
extreme case, a single LP can simulate all the PPs—this would have been the case of central-
ized or sequential simulation. When the simulation is divided among several LPs, each LP 
simulates a partial list of events. An LP LPi simulates the events of its constituent PPs at its 
own speed, which depends on its own resources and scheduling policies. It may not have any 
relationship with the speed at which a different LP LPj simulates a different list of events. In 
this sense, distributed simulation is a computation on an asynchronous network of LPs.

The system of tellers in the bank can be modeled as a network of four processes LP1, 
LP2, LP3, LP4. Of these, LP1 simulates PP A, LP2 simulates PP W1, LP3 simulates PP W2, 
and LP4 simulates PP sink (Figure 18.2). Each LP maintains a local virtual clock that over-
sees the progress of the simulation of events assigned to it. The LP corresponding to the 
source is not shown. Figure 18.3 shows the event lists for the four LPs.

All correct simulations satisfy the following two criteria:

Realizability: The output of any LP at time t is a function of its current state and all messages 
received by it up to time t. No PP can guess the messages it will receive at a future time.

Predictability: For every LP, there is a real number L(L > 0) such that the output messages 
(or the lack of it) can be predicted up to time (t + L) from the set of input messages that 
it receives up to and including time t.

In the bank example, the predictability criterion is satisfied as follows: Given the input 
to teller 1 at time t, its output can be predicted up to time (t + 5). Predictability is important 
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in those  systems where there is a circular dependency among the PPs. As an example, con-
sider the life of a process that alternates between the CPU and the I/O devices: A typical 
process spends some time in the CPU, then some time doing I/O, then again resumes the 
CPU operation, and so on. The corresponding network of LPs is shown in Figure 18.4. For 
simplicity, it assumes that the CPU, the I/O, the input switch S1, and output switch S2 need 
zero time to complete their local tasks.

To make progress, each LP will expect input events with times greater than those cor-
responding to the previous event. Due to the realizability criterion, no LP can now make 
any progress, since the smallest input clock value of any LP does not exceed the local clock 
of that unit. The predictability criterion helps overcome this limitation. For example, if the 
LP simulating the switch S1 can predict its output up to some time (9 + ε), then it provides 
the push needed for the progress of the simulation.

Now, revisit the causality requirement in criterion 3. The virtual clock T of each LP is 
initialized to 0. The causality constraints within an LP are trivially satisfied as long as each 

LP1(A)

LP3(W2)

LP1(W1)

LP4(sink)Clock = 5

Clock = 3

Clock = 0

Clock = 15, 5 1, 6

3, 8

FIGURE 18.2 A network of four LPs simulating the events in the bank: The message output of each 
LP indicates the <start, end> times corresponding to the most recent event simulated by that LP.

Event list of receptionist (A)

No. Start Time Event End Time
1 1 C1 @ A 1
2 3 C2 @ A 3
3 5 C3 @ A 5

Event list of teller 1 (W1)

No. Start Time Event End Time
1 1 C1 @ W1 6

Event list of teller 2 (W2) 

No. Start Time Event End Time
1 3 C2 @ W2 8

Event list of sink

No. Start Time Event End Time
1 6 C1 @ W1 6

FIGURE 18.3 List of events in the four LPs.
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LP schedules events in ascending order of its local virtual clock. To satisfy the causality 
requirement between distinct LPs, a logical clock value is assigned to each channel in the 
network of LPs. Consider a channel from LPj to LPi. Initially, for every channel, clock = 0. 
By sending a message (t0, m0), LPj makes LPi aware of all messages sent by PPj to PPi up 
to time t0.* As LPj makes progress and sends the next message (t1, m1), LPi interprets that 
clock(j, i) has been incremented from t0 to t1. The causality criterion for a single channel is 
satisfied by the following chronology requirement:

Chronology requirement: If a sequence of messages (t0, m0), (t1, m1), (t2, m2), … is sent by 
one LP to another across a channel, then t0 < t1 < t2 < ….

When an LP receives a message (t1, m1), it assumes that the corresponding PP has 
received all messages prior to t1. Only after an LP receives a message (t, m) through 
every incoming channel, it simulates the events of the physical system up to the smallest 
channel clock time among all (t, m) pairs through the incoming channels and sends out 
messages to other LPs. Thereafter, the LP updates its own virtual clock to the smallest 
clock value on its input channels. Only a source node can send a message without receiv-
ing any input message. Note that some of these incoming or outgoing messages may be 
blank, since there may not be any significant update from a sender or an update to a 
receiver. We will address this issue shortly.

The life of an LP LPi can thus be summarized as follows:

 {Program outline for a logical process LPi}
 Ti:=0{Ti is the local virtual clock}
do <termination condition> = false →
 {Simulate PPi up to time Ti}
  Compute the messages that PPi would send to each neighbor;
  Send them to the corresponding LPs in ascending time order;
  Update the local event list
 {Increment the local virtual clock Ti}
  Receive messages along all incoming channels;
  Update the local event list;
  Ti: = minimum of all incoming channel clock values
od

* Ideally, we would specify a time window 〈x,y〉 with each message output. It will signal to the receiving process that the 
sender will not send any message with time less than y. For simplicity, we only mention y here.

CPU

I/O

S1 S2

Clock = 9 Clock = 9 Clock = 9

Clock = 9

15, 15 9, 9

9, 99, 9

9, 9

In Out

FIGURE 18.4 A network of LPs showing the life of a process alternating between the CPU and I/O.
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The termination condition is left unspecified here. If the physical system terminates, then 
the simulated system of LPs will also terminate. Otherwise, the simulation may be termi-
nated based on some other predefined criteria, for example, after a given interval of time 
beyond which the simulation results are of no interest to anyone.

18.2.2 Correctness Issues

The correctness of distributed simulation is specified by the following two properties:

Safety: At least one LP must be able to make a move until the simulation terminates.

Progress: Every virtual clock (of the LPs and the channels) must eventually advance until 
the simulation terminates.

The safety property corresponds to the absence of deadlock, and the progress ( liveness) 
property guarantees termination. Depending on how the safety and progress properties 
are satisfied, the techniques of distributed simulation have been classified into two types: 
conservative and optimistic. Conservative methods rule out the possibility of causality 
errors. Optimistic methods, on the other hand, allow limited amount of causality errors 
but allow the detection of such errors, followed by a rollback recovery.

18.3 CONSERVATIVE SIMULATION
The life of an LP described in the previous section ref lects the principle of conservative 
simulation. Causality errors are ruled out, since every LP schedules each event (of 
the corresponding PP) at time T after it has received the notification of the simulation 
of all relevant prior events up to time T. While this approach is technically sound, it 
fails to satisfy the safety requirement, since deadlock is possible. To realize why, revisit 
the example of the bank. Assume that for some reason, the receptionist (A) decides to 
send all the customers to teller 1. As a result, the clock on the link from the LP simu-
lating W2 to the LP simulating the sink will never increase, which will disable further 
actions by the sink LP.

What is the way out? If an LP does not receive a message through one or more of its 
input channels, should it go ahead with the messages from the remaining input chan-
nels and maintain progress? No process can forecast if it will ever receive a message 
with a lower timestamp through an incoming channel in the future. One solution is 
to allow deadlock to occur and subsequently use some method for deadlock detection 
and resolution (see Chapter 9). Another method is to use null messages, proposed by 
Chandy and Misra.

A null message (t, null) sent out by LPi to LPj is an announcement of the absence of a mes-
sage from PPi to PPj up to time t. It guarantees that the next regular (i.e., non-null) message 
to be sent by LPi, if any, will have a time component larger than t. Such messages do not have 
any counterpart in the physical system. In the bank example, if at time t the receptionist 
decides not to send any customer to W2 for the next 30 min, then the LP simulating A will 
send a message (t + 30, null) to the LP simulating W2. Such a guarantee accomplishes two 
things: (1) It helps advance the channel clock on the link from the LP simulating A to the LP 
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simulating W2 to be updated to t + 30. The local virtual clock of W2 is updated according to 
the simulation algorithm, and progress is maintained. (2) It helps avoid deadlock since every 
LP is eventually guaranteed to receive a message through each incoming channel process.

Conservative simulation relies on good predictability for achieving good performance: a 
guarantee by an LP that no event will be generated during a time window (t, t + L) enables 
one or more neighboring LPs to safely proceed with the simulation of events scheduled 
between t and t + L. A drawback of conservative simulation is its inability to exploit poten-
tial parallelisms that may be present in the physical system. Conservative simulation is 
able to speed up simulation tasks by the parallel scheduling of events that are not caus-
ally related. However, causal dependencies are sometimes revealed at run time. Even if an 
event e seldom affects another event e′ or is not likely to affect e′, conservative simulation 
will not risk violating the causal order between e and e′, although most of the time concur-
rent execution would have been feasible.

18.4 OPTIMISTIC SIMULATION AND TIME WARP
Optimistic simulation method, on the other hand, takes reasonable risks to expedite the 
simulation. It does not necessarily avoid causality errors—but it detects them when such 
an error occurs and arranges for recovery. The advantage is better parallelism in those 
cases in which causality errors are rare. An optimistic simulation protocol based on the 
virtual time paradigm is Time Warp, originally proposed by Jefferson [J85]. A causality 
error occurs whenever the timestamp of the message received by an LP is smaller than the 
value of that of its virtual clock. The event responsible for the causality error is known as 
a straggler. Recovery from causality errors is performed by a rollback that will undo the 
effects of all events that have been prematurely processed by that LP. Such a rollback can 
trigger rollbacks in other LPs too, and the overhead of implementing the rollback is non-
trivial. Performance improves only when the number of causality errors is small.

To estimate the cost of a rollback, note that an event executed by an LP may result in 
(1) changing the state of that LP and (2) sending messages to the other LPs. To undo the 
effect of the first operation, old states need to be saved by the LPs, until there is a guarantee 
that no further rollbacks are necessary. To undo the effects of the second operation, an LP 
will send an antimessage or a negative message that will annihilate the effect of the original 
message when it reaches its destination LP.

When a process receives an antimessage, two things can happen: (1) If it has already 
simulated the previous message, it rolls back. (2) If it receives the antimessage before pro-
cessing the original message (which is possible but less frequently), it simply ignores the 
original message when it arrives.

Certain operations are irrevocable, and it is not possible to undo them once they are com-
mitted. Examples include dispensing cash from an ATM or performing an I/O operation 
that influences the outside world. Such operations should not be committed until there is a 
guarantee that it is final. Uncommitted operations are tentative and can always be canceled. 
This leads to the interesting question of how to define a moment after which the result of 
an operation can be committed. The answer lies in the notion of global virtual time (GVT).
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18.4.1 Global Virtual Time

In conservative simulation, the virtual clocks associated with the LPs and the channels 
monotonically increase until the simulation ends. However, in optimistic simulation, 
occasional rollbacks require the virtual clocks local to the LPs (LVTs) to turn back from 
time to time (Figure 18.5). This triggers a rollback in some channel clocks too.

In addition to the time overhead of rollback (which potentially reduces the speedup 
obtained via increased parallelism), the implementation of rollback has a space overhead—
the states of the LPs have to be saved so that they can be retrieved after the rollback. Since 
each processor has finite resources, how much memory or disk space should be allocated to 
preserve the old states and when these can be deallocated are important issues.

At any real time, the GVT is the smallest among the local virtual times of all LPs, and 
the timestamps of all messages (positive and negative) in transit in the simulated system. By 
definition, no straggler will have a timestamp smaller than the GVT, so the storage used by 
events having timestamps smaller than the GVT can be safely deallocated. Furthermore, 
all events older than the GVT can be committed, since their rollbacks are ruled out. The 
task of reclaiming storage space by trashing states related to events older than the GVT is 
called fossil collection.

Theorem 18.1

The GVT eventually increases if the scheduler is fair.

Proof: Arrange all pending events and undelivered messages in the ascending order of time-
stamps. Let t0 be the smallest timestamp. By definition, GVT ≤ t0. A fair scheduler will eventually 
pick the event (or message) corresponding to the smallest timestamp t0 for processing, so there 
is no risk of rollback for this event. Any event or message generated by the execution of this event 
will have a timestamp greater than t0, so the new GVT will be greater than its previous value. 
Recursive application of this argument shows that GVT will eventually increase. ◾
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FIGURE 18.5 The progress of local and global virtual clocks in optimistic simulation.
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Theorem 18.1 demonstrates that optimistic simulation satisfies the progress property. 
Two interesting related questions are as follows: (1) How will the LPs compute the GVT 
and (2) how often will they compute it? One straightforward way to calculate the GVT is 
to take a distributed snapshot (Chapter 8) of the network of LPs, which takes O(n) time 
where n is the number of LPs. Following this, the LPs can free up some space. If the GVT is 
infrequently computed, then the fossils will tie up the space for a longer period of time. On 
the other hand, if the GVT is computed frequently, then the time overhead of GVT com-
putation will slow down the progress of simulation. An acceptable performance requires a 
balancing act between these two conflicting aspects.

18.5 CONCLUDING REMARKS
Real-life simulation problems are increasing in both scale and complexity. As a result, the bulk 
of the recent work on simulation focuses on methods of enhancing the performance of simu-
lation. While conservative simulation methods are technically sound and easier to implement, 
optimistic methods open up possibilities for various kinds of optimizations that enhance per-
formance. Application-specific knowledge plays a useful role in maximizing the efficiency.

Performance optimization opportunities in conservative simulation are limited. Good 
predictability is a big plus: Whenever an LP sends out a message with a prediction window 
L, it enables the receiving LPs to process events L steps ahead. Accordingly, the larger is the 
value of L, the greater the speedup.

Lazy cancellation is a technique for speeding up optimistic simulation. If a causal-
ity error immediately triggers the sending of antimessages, then the cancellation is 
aggressive, and it is the essence of the original time-warp protocol. As an alternative, 
the process may first deal with the straggler and reexecute the computation (by tak-
ing into account the straggler, as if it was received earlier) to check if it indeed gener-
ated the same message. If so, then there is no need to send the antimessage, and many 
needless rollbacks at other LPs may be avoided. Otherwise, the antimessages are sent 
out. The downside of lazy cancellation is that if indeed the antimessages are needed, 
then the delay in sending them and the valuable time wasted in reexecution will cause 
the causality error to spread and delay recovery. This can potentially have a negative 
impact on the performance.

18.6 BIBLIOGRAPHIC NOTES
Chandy and Misra [CM81] and independently Bryant [B77] did much of the early 
work on distributed simulation. Misra’s survey paper [M86] formulates the distributed 
simulation problem and introduces conservative simulation. In addition to the safety 
and liveness properties, this chapter also explains the role of null messages in dead-
lock avoidance. Jefferson [J85] proposed optimistic simulation techniques. The bulk of 
the work following Jefferson’s paper deals with the performance improvement of Time 
Warp. For example, Gafni proposed lazy cancellation [Ga88]. Fujimoto [Fu90] wrote 
a survey on distributed discrete-event simulation. Further details can be found in his 
book on the same topic.
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EXERCISES
18.1 Consider the implementation of the XOR function using NAND gates in Figure 18.6.

a. Simulate the operation of the previous circuit using a single process. For each 
gate, the delay is shown in nanoseconds. Assume that the signal propagation 
delay along the wires is zero.

b. Set up a conservative simulation of the preceding circuit using a separate LP for 
each NAND gate. Apply the input X,Y = (0,0) (0,1) (1,1) (0,0) and simulate the 
events at intervals of 1 ns.

18.2 Consider the M/M/1 queuing network as shown Figure 18.7:
Assume that the arrival of customers into the bank queue is a Poisson process with 
an arrival rate of 3 per minute, and the service rate by the bank teller is 2 per minute. 
Perform a conservative simulation of the previous network using two LPs: One for the 
queue of customers and the other for the bank teller. Run the simulation for 150 min of 
real time and find out the maximum length of the queue during this period.
[Note: The probability of n arrivals in t units of time is defined as P0(t) = e−λt(λt)n/n!. 
The interarrival times in a Poisson process have an exponential distribution with a 
mean of λ. Review your background of queuing theory before starting the simulation.]

18.3 Consider the cancellation of messages by antimessages in optimistic simulation.
a. What happens if the antimessage reaches an LP before the original message?
b. Unless the antimessages travel faster than the original messages, causality errors 

will infect a large fraction of the system. Is there a way to contain the propagation 
of causality errors?

X    YX

Y
4

2

4

3 +

FIGURE 18.6 An implementation of XOR using NAND gates: For each gate, the delay is shown in 
nanoseconds.

Bank
teller

Queue of customers

Arrival Departure

FIGURE 18.7 A M/M/1 queuing network.
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18.4 In an optimistic simulation, suppose the available memory space in each LP is sub-
stantially reduced. What impact will it have on the speed of the simulation? Justify 
your answer.

18.5 Many training missions require human beings to interact with the simulated envi-
ronment. Outline a method to include a human in the loop of distributed simulation. 
Explain your proposal with respect to a typical conservative simulation setup for a 
problem of your choice.
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C h a p t e r  19

Security in Distributed 
Systems

19.1 INTRODUCTION
With the rapid growth of networking and Internet-based activities in our daily lives, secu-
rity has become an important issue. The security concerns are manifold: If the computer 
is viewed as a trustworthy box containing legitimate software only, security concerns 
relate to data in transit. The main concern here is that almost all these communications 
take place over public networks, and these networks are accessible to anyone. So how do 
we prevent an eavesdropper from stealing sensitive data, like our credit card numbers or 
social security numbers that may be in transit over a public network? How can we pre-
serve the secrecy of a sensitive conversation between two agencies over a public network? 
These concerns relate to data security. Another aspect questions the trustworthiness of the 
machines that we work with. Data thieves constantly attack our computing equipment by 
sending virus and worms, which intrude our systems and compromise the software or the 
operating system—as a result, the integrity of our machines becomes a suspect. Spywares 
steal our sensitive data. Trojan horses, in the disguise of carrying out some useful task, 
indulge in illegitimate activities via the backdoor. These concerns relate to system security. 
This chapter primarily addresses data security—only a brief discussion of system security 
appears toward the end. There are six major requirements in security. These are as follows:

 1. Confidentiality: Secure data must not be accessible to unauthorized persons.

 2. Integrity: Data consistency should never be compromised. All modifications must be 
done via authorized means only.

 3. Authentication: The identity of the person performing a secure transaction must be 
established beyond doubt.

 4. Authorization: The user’s actions must be consistent with what he or she is authorized 
to do. Unauthorized actions should not be allowed.
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 5. Nonrepudiation: The originator of a communication must be made accountable.

 6. Availability: Legitimate users must have access to the data when they need them.

To understand these requirements, consider the example of Internet banking. Many of us 
do electronic bank transactions through secure channels from the computer at our homes. 
Confidentiality requires that your transactions should not be visible to outsiders even if the 
communications take place through public networks. Integrity requires that no one should 
be able to tamper with your account balance by any means whatsoever. Authentication 
requires the system to verify you are what you claim to be and only allow you and nobody 
else to access your account. Authorization requires the system to allow you to carry out 
those actions for which you have permissions. For example, you can transact money from 
your savings account, but cannot modify the interest rate. Nonrepudiation is a form of 
accountability that guarantees that if you indeed performed some transactions on your 
account (e.g., withdrew a large sum of money on a certain date), you should not be able to 
say later: “I did not do it.” This is important for settling disputes. Finally, availability guar-
antees that when you need to access the account (say for paying a bill by a certain deadline), 
the system should be available. A secure system is useless, if it is not available.

19.2 SECURITY MECHANISMS
Three basic mechanisms are used to meet security requirements. These are as follows:

 1. Encryption: Encryption implements a secure data channel, so that information is not 
leaked out to or stolen by outsiders.

 2. Signature: Digital signatures provide authentication and nonrepudiation and protect 
integrity.

 3. Hashing: Checksums or hash functions maintain data integrity and support 
authentication.

There are many algorithms to implement each of these mechanisms. These mechanisms 
collectively implement a security service offered to clients. Examples of secure services are 
secure socket layer (SSL) for confidential transactions and secure shell (SSH) for remote 
login to your computer.

Secure system design is unrealistic, unless the nature of the threat is known. In the fol-
lowing, we discuss some common types of security attacks or threats.

19.3 COMMON SECURITY ATTACKS
19.3.1 Eavesdropping

Unauthorized persons can intercept private communication and access confidential infor-
mation. Data propagating through wires can be stolen by wiretapping. Wireless commu-
nication can be intercepted using a receiver with an appropriate antenna. Eavesdropping 
violates the confidentiality requirement.
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19.3.2 Denial of Service

Denial-of-service (DoS) attack uses malicious means to make a service unavailable 
to legitimate clients. Ordinarily, such attacks are carried out by flooding the server 
with phony requests. For example, DHCP clients are denied service if all IP addresses 
have been drained out from the DHCP server using artificial requests for connection. 
Although it does not pose a real threat, it causes a major inconvenience and may cause 
revenue loss.

19.3.3 Data Tampering

This refers to unauthorized modification of data. For example, the attacker working as a 
programmer in a company somehow doubles his monthly salary in the salary database of 
the institution where he works. It violates the integrity requirement.

19.3.4 Masquerading

The attacker disguises himself or herself to be an authorized user and gains access to 
sensitive data. Sometimes authorized personnel may masquerade to acquire extra privi-
leges greater than what they are authorized for. A common attack comes through stolen 
login id’s and passwords. Sometimes, the attacker intercepts and replays an old message 
on behalf of a client to a server with the hope of extracting confidential information. A 
replay of a credit card payment can cause your credit card to be charged twice for the same 
transaction.

A widespread version of this attack is the phishing (deliberately misspelled) attack. 
Phishing attacks use spoofed emails and fraudulent websites to fool recipients into divulg-
ing personal financial data such as credit card numbers, account usernames and passwords, 
and social security numbers. Average citizens are targeted by imposters masquerading for 
financial institutions, social networking sites, or Internet auction sites. Statistics [APWG] 
show that the fraudulent emails are able to convince up to 5% of the users who respond and 
divulge their personal data to these scam artists.

19.3.5 Man in the Middle

Assume that Amy wants to send confidential messages to Bob. To do this, both Amy and 
Bob ask for each other’s public key (an important tool for secure communication in open 
networks) first. The attacker Mallory intercepts messages during the public key exchange, 
acquires copies of these public keys, and substitutes his own public key in place of the 
requested one to both Amy and Bob. Now, both communicate using Mallory’s public 
key, so only Mallory can receive the communication from both parties. To Amy, Mallory 
impersonates as Bob, and to Bob, Mallory impersonates as Amy. This is also known as 
bucket brigade attack.

19.3.6 Malicious Software

Malicious software (commonly called malware) gets remotely installed into your computer 
system without your informed consent. Such malware facilitates the launching of some of 
the attacks highlighted earlier. There are different kinds of malicious software:
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19.3.6.1 Virus
A virus is a piece of self-replicating software that commonly gets attached to an executable 
code, with the intent of carrying out destructive activities. Such activities include erasing 
files, damaging applications or parts of the operating system, or sending emails on behalf 
of an external agent. The file to which the virus gets attached is called the host, and the 
system containing the file is called infected. When the user executes the code in a host 
file, the virus code is first executed. Common means of spreading virus are emails and file 
sharing. Although viruses can be benign, most have payloads, defined as actions that the 
virus will take once it spreads into an uninfected machine. One such payload is a backdoor 
that allows remote access to a third party.

19.3.6.2 Worms
Like a virus, a worm is also a self-replicating program with malicious intent. However, unlike 
a virus, a worm does not need a host. A hacker who gains control of the machine through the 
backdoor can control the infected machine and perform various kinds of malicious tasks. The 
computers that are taken over are called bots or zombies. The infected computers form a net-
work called a botnet. Criminals use botnets to send out spam emails, spread viruses, launch 
distributed denial-of-service (DDoS) attacks and commit other kinds of crime and fraud. 
Spammers using zombies save the bandwidth of their own machines and avoid being detected. 
As of August 2010, an estimated number of 200 billion spam emails were sent per day.

Two well-known worms in the past decade are Mydoom and Sobig. The Sobig worm was 
first spotted in August 2003. It appeared in emails containing an attachment that is an 
executable file—as the user clicked on it, the worm got installed as a Trojan horse. Mydoom 
was identified on January 26, 2004. The infected computers sent junk emails. Some believe 
that the eventual goal was to launch a DoS attack against the SCO group who was opposed 
to the idea of open-source software, but it was never confirmed.

19.3.6.3 Spyware
Spyware is a malware designed to collect personal or confidential data, to monitor your 
browsing patterns for marketing purposes, or to deliver unsolicited advertisements. 
Spyware gets downloaded into a computer (mostly by nonsavvy users) when they surf the 
web and click on a link used as bait. Examples of baits include pop-ups asking the user 
to claim a prize, or offer a substantially discounted airfare to a top destination, or invite 
the user to visit an adult site. Users may even be lured away to download free spyware-
protection software. The baits are getting refined every day. Unlike virus, spyware does not 
replicate itself or try to infect other machines. Spyware does not delete files, and consumes 
a fraction of the bandwidth causing it to run slower.

19.4 ENCRYPTION
The Old Testament (600 BC) mentions the use of reversed Hebrew alphabets to maintain 
secrecy of message communication. Modern cryptography dates back to the days of Julius 
Caesar who used simple encryption schemes to send love letters. The essential components 
of a secure communication using encryption are shown in Figure 19.1. Here,
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Plaintext = raw text or data to be communicated.

Ciphertext = encrypted version of the plaintext.

Key =  the secret code used to encrypt the plaintext. No one can decipher or decrypt the 
ciphertext without having the appropriate key for it.

Caesar’s encryption method was as follows: Substitute each letter of the English alphabet 
by a new letter k placed ahead of it. Thus, when k = 3 (which is what Caesar used) “A” in 
plaintext will become “D” in the ciphertext, and “Y” in plaintext will become “B” in the 
ciphertext (the search rolls back to the beginning), and so on. Formally, we can represent 
the encryption and decryption mechanisms (with key k) as two functions:
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where L denotes the numerical index of a letter and 0 ≤ L ≤ 25. Such ciphers are called 
substitution ciphers.

Unfortunately, such an encryption scheme provides very little secrecy, as any motivated 
puzzle solver can decrypt the ciphertext in a few minutes. Nontrivial cryptographic technique 
should therefore have a much more sophisticated encryption scheme, so that no intruder or 
eavesdropper can find any clue about the encryption method, nor can he use a machine to 
systematically try out a series of possible decryption methods within a relatively short period 
of time. Note that given enough time, any ciphertext can be deciphered by an intruder using 
a systematic method of attack. The larger this time is, the more secure is the encryption.

A cryptosystem is defined by its encryption and decryption mechanisms. If P denotes 
the plaintext and C denotes the corresponding ciphertext, then

 

C E P

P D C D C P

k

k k k

=

= =

1

2 2 1

( )

( ) ( ( ))

where
Ek1 is the encryption function with key k1
Dk2 is the decryption function with key k2
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FIGURE 19.1 A scheme for secure communication.
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The decryption function Dk2 is the inverse of the encryption function Ek1 (denoted as Ek1
1− ) 

and vice versa. A cryptosystem is called symmetric, if both parties share the same key for 
encryption and decryption. Otherwise, the cryptosystem becomes asymmetric.

19.5 SECRET KEY CRYPTOSYSTEM
Secret key cryptosystem (also known as private key cryptosystem) is a symmetric crypto-
system. It consists of an encryption function E, a decryption function D (the inverse of E), 
and a secret key k that is shared between the sender and the receiver. The functions E and D 
need not be secret. All that is required is for the two parties to agree upon a secret key 
before the communication begins. There are numerous examples of secret key cryptosys-
tems. We classify these into two different types: block ciphers and stream ciphers. In block 
ciphers, the data are first divided into fixed size blocks before encryption. This is appli-
cable, when the data to be sent are available in its entirety before communication begins. 
In contrast, stream ciphers are used for transmitting real-time data that are spontaneously 
generated, for example, voice data.

19.5.1 Confusion and Diffusion

According to Shannon [S49], confusion and diffusion are the two cornerstones of secret-
key cryptography. To break a code, one of the important tools for a cryptanalyst is to make 
use of the frequency of letters or phrases in human-readable messages. This is called a 
statistical attack. Two kinds of statistics are useful in launching attacks: In the first, the 
cryptanalyst has access to several ciphertexts of messages using the same key, but does 
not have access to the plaintext. In the second, the cryptanalyst has access to both the 
plaintext and the ciphertext of messages using the same key. Diffusion spreads the influ-
ence of each bit of the plaintext over several bits of the ciphertext. Thus, changing a small 
part of the plaintext affects a large number of bits of the ciphertext. This dissipates the 
statistical structure of the plaintext, making it difficult for the statisticians to utilize the 
statistics by analyzing the ciphertext. As an example, let Y = y0y1y2...ym−1 be the ciphertext 
for the plaintext X = x0x1x2…xm−1, each x and y being the indices of letters from the English 
alphabet. An encryption mechanism may use the function y xj j k
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k
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implement diffusion. An intruder will need many more ciphertexts (compared that in 
a simple Caesar-like substitution cipher) to launch a meaningful statistical attack on the 
cipher and discover the key.

Confusion, on the other hand, makes the relationship between the key and the cipher-
text as complex as possible. Caesar cipher that replaced each letter by k letters ahead of it is 
a simple example of confusion—perhaps too simple for a modern adversary. Confusion is a 
complex form of substitution where every bit of the key influences a large number of bits of 
the ciphertext. In an effective confusion, each bit of the ciphertext depends on several parts 
of the key, so much so that the dependence appears to be random to an intruder. Even if the 
statistics about the plaintext is known, the complex use of the key makes it very hard for a 
cryptanalyst to deduce it.
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Traditional cryptography implements confusion using substitution boxes (S-boxes). 
A (p × q) S-box takes p bits from the input and coverts it into q bits of output, often using 
a lookup table. Table 19.1 illustrates a lookup table for a (6 × 4) S-box. The row headings 
are the pairs consisting of the first and the last bits, and the column headings represent the 
middle 4 bits of the input.

Using this table, the 6-bit input 100100 is transformed as follows: The outer bit pair is 10, 
and the middle bits are 0010, so the output is 0001.

In block ciphers, diffusion propagates changes in one block to the other blocks. 
Substitution itself diffuses the data within one block. To spread the changes into the other 
blocks, permutation is used. In an ideal block cipher, a change of even a single plaintext 
bit will change every ciphertext bit with probability 0.5, which means that about half of 
the output bits should change for any possible change of a bit in an input block. Thus, the 
ciphertext will appear to have changed at random even between related message blocks. 
This will hide message relationships that can potentially be used by a cryptanalyst. This 
kind of diffusion is a necessary, but not a sufficient requirement good block cipher.

Block ciphers implement confusion by mapping each block of plaintext to the same block 
of ciphertext. Without a diffusion mechanism, an attacker can recognize such repetitions, 
do a frequency analysis, and infer the plaintext. Cipher block chaining (CBC) is a diffusion 
mechanism that overcomes this problem. Let P0,P1,P2,… be the blocks of the plaintext and 
Ek be the encryption function. Then CBC encrypts the plaintext as follows:
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19.5.2 DES

Data encryption standard (DES) is a secret-key encryption scheme developed by IBM 
(under the name Lucifer) in 1977. In DES, the plaintext is divided into 64-bit blocks. Each 
such block is converted into a 64-bit ciphertext using a 56-bit key. The conversion mecha-
nism is outlined in Figure 19.2. The plaintext, after an initial permutation, is fed into a 
cascade of 16 stages. A 56-bit secret master key is used to generate 16 keys, one for each 

TABLE 19.1 Lookup Table of a (6 × 4) S-Box
0000 0001 0010 … 1111

00 0010 1100 0100 … 1001
01 1110 1011 0010 … 1110
10 0100 1000 0001 … 0011
11 1011 0010 1100 … 0110

Note: The rows represent the outer bits of the input, the col-
umns represent the middle bits of the input, and the 
entries in the matrix represent the output bits.
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stage of the cascade. The right half of stage (k − 1) (k > 0) becomes the left half of stage k 
(diffusion), but the left half undergoes a transformation (confusion) before it is used as the 
right half of the next stage. This transformation uses a special function F (which is not a 
secret function) and a 48-bit key derived from the 56-bit secret master key. The output of 
the final stage (i.e., stage 15) is once more permuted to generate the ciphertext.

A blind attack by a code breaker will require on an average 255 trials (half of 256) to find 
out the secret key. However, with the rapid improvement in the speed of computers and 
with the collective effort by a set of machines running in parallel, DES does not provide 
enough security against a desperate code breaker—blind attacks can crack the code in a 
reasonable short period of time. For example, the winner of the RSA Challenge II contest in 
1998 cracked DES in 56 h using a supercomputer. In 1999, distributed.net partnering with 
Electronic Frontier Foundation won Challenge III and cracked DES in 22 h. With today’s 
technology, for an investment of less than a few thousand dollars, dedicated hardware can 
be built to crack DES in less than an hour. Government agencies ruled DES as out of date 
and unsafe for financial applications. Longer keys are needed.

A major challenge in secret key encryption is the distribution of the secret key among 
legitimate users. The distribution of the secret key itself requires a secure channel (e.g., 
by registered post or through a trusted courier). The recipient should know ahead of time 
when the key is being sent. The problem of communicating a large message in secret is 
reduced to communicating a small key in secret. In fact, key distribution is one of the 
major impediments behind the use of secret-key encryption. Another concern is the large 
number of keys that need to be used in a network with a large number of users. Note that 
for confidentiality, every pair of communicating users needs to have a unique secret key. 
This means that in a network with n users, n(n − 1)/2 keys will be needed, and for a large 
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FIGURE 19.2 One stage of transformation in DES.
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network, the cost of distributing them could be prohibitive. In Section 19.10, we will dis-
cuss how an authentication server (AS) can distribute the keys to its clients.

19.5.3 3DES

3DES or Triple DES is a refinement of DES designed to reduce its vulnerability against 
brute-force attacks. It applies the DES transformation three times in succession (encrypt–
decrypt–encrypt) using three separate 64-bit secret keys k1, k2, k3 to generate the cipher-
text C from a plaintext P:

 C E D E Pk k k= 3 2 1( ( ( )))

3DES reuses DES implementations for the sake of efficiency. It has been shown that against 
brute-force attacks, 3DES provides resilience equivalent to a 112-bit key version of DES. 
However, the conversion in DES is slow, and that in 3DES is painstakingly slow. These days, 
3DES is considered a legacy encryption algorithm.

Several other symmetric cryptosystems use 128-bit keys. These include tiny encryption 
algorithm (TEA) by Wheeler and Needham [WN94] and international data encryption 
algorithm (IDEA) due to Lai and Massey [LM90]. Blowfish is an encryption mechanism 
designed by Schneier—it uses a variable size key of 32–448 bits. Another symmetric 
encryption mechanism designed by Schneier et al. [SKW+98] is Twofish with a 128-bit key. 
The advanced encryption standard (AES) eventually superseded all these, and it has been 
accepted as the US government’s symmetric encryption standard.

19.5.4 AES

NIST ran a public process to choose a successor of DES and 3DES. Of the many submis-
sions (Twofish was one of them), they chose Rijndael developed by two Belgian cryptogra-
phers Joan Daemen and Vincent Rijmen. A restricted version of this is now known as the 
AES. The AES is a block cipher with a fixed block size of 128 bits and a key size of 128, 192, 
or 256 bits, whereas Rijndael can be specified with key and block sizes in any multiple of 
32 bits, with a minimum of 128 bits and a maximum of 256 bits.

The US government approved the use of 128-bit AES to protect classified information 
up to the secret level. Top secret information will require use of either the 192 or 256 key 
lengths. However, the National Security Agency (NSA) must certify these implementations 
before they become official.

19.5.5 One-Time Pad

A one-time pad is a secret cryptosystem in which each secret key expires after a single use. 
Also called the Vernam cipher, one-time pad uses a string of bits generated completely 
at random. The length of the keystream is the same as that of the plaintext message. The 
random string is combined with the plaintext using bitwise XOR operation to produce 
the ciphertext. Since the entire keystream is randomly generated, an eavesdropper with 
unlimited computational resources can only guess the plaintext if he sees the ciphertext. 
Such a cipher is provably secure, and the analysis of one-time pad provides some insight 
into modern cryptography.
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Despite being provably secure, one-time pad introduces serious key-management prob-
lems. Users who started out at the same physical location, but later separated, have used one-
time pads. One-time pads have been popular among spies carrying out covert operations.

19.5.6 Stream Ciphers

Stream ciphers are primarily used to encrypt real-time data that are spontaneously gener-
ated. The encryption takes place on smaller size data units. Stream ciphers were developed 
as an approximation to the mechanism of the one-time pad. While contemporary stream 
ciphers are unable to provide the satisfying theoretical security of the one-time pad, they 
are at least practical. Stream data are encrypted by first generating a keystream of a very 
large size using a pseudorandom number generator and then XORing it with data bits from 
the plaintext. These pseudorandom numbers have very large periods and often serve as 
a good approximation for the perfect random number required in a one-time pad. If the 
recipient knows the keystream, then she can decipher it by XORing the key stream with 
the ciphertext (for any data bit b and keystream bit k, the ciphertext is b ⊕ k, and b ⊕ k ⊕ k = b 
returns the plaintext.)

The pseudorandom number generator is seeded with a key, and the keystream is the 
output of the pseudorandom number generator. To generate identical random keystreams, 
both senders and receivers use the same random number generator and identical seeds. 
This is a lightweight security mechanism targeted for mobile devices. The keystream can 
be computed using known plaintext attacks: The XOR of a known plaintext b and its cor-
responding ciphertext b ⊕ k reveals the keystream.

RC4: Designed by Ron Rivest of RSA Security, RC4 is a stream cipher optimized for fast 
software implementation. The encryption mechanism uses a 256-byte array R and runs in 
three phases:

 1. Choose a 40–256-bit key. The length of a key is the number of bytes in the key.

 2. Initialize register R using the chosen key.

 3. Generate the keystream, a pseudorandom sequence of bits.

This keystream will be used to encrypt the plaintext. The scheme is illustrated in Figure 
19.3. The first step is to initialize a byte array R as follows:

program Initialization of R
define R: 256-byte array, key: array of bits, j,k: integer
initially ∀i:0  ≤  i  ≤  255::R[i]:= i;
j:=0;  k:= 0;
do k  ≤  255  →
 j:=(j+R[k]+key[k  mod  length(key)])mod  256
 swap(R[j],R[k])
 k:= k  +1
od
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To generate the keystream, the byte array R is associated with two pointers p and q. After 
R is initialized, the following program generates the keystream:

program generation of the keystream in RC4
define R: 256-byte array, k: byte
 p,q : pointer variables initialized to 0
do true  →
 p :=  p  +  1  mod 256
 q :=  q  +  R[p]  mod 256;
 swap (R[p],R[q]);
 k :=  R[R[p]+R[q]mod  256] {k is the output}
 {k is XORed with the plaintext byte to generate the ciphertext byte}
od

RC4 is used in the implementations of SSL/(Transport Layer Security) TLS, WEP (for 
wireless networks), and several other applications. In 2013, however, a new analysis 
showed how RC4 can be broken [ABP+13], and the impact of this weakness is being 
investigated.

19.5.7 Steganography

In Greek, steganography means covered writing. It is the technique of hiding the actual 
communication in the body of an inconspicuous sentence or a paragraph. Unlike encryp-
tion where the transmitted ciphertext is incomprehensible and meaningless to an outsider, 
the transmitted text in steganography has a valid, but different meaning.

In [K67], Kahn quotes an example of a message [K96] that was actually sent by the 
German embassy to Berlin during WWI:

Apparently neutral’s protest is thoroughly discounted and ignored.
Isman hard hit. Blockade issue affects pretext for embargo on byproducts, ejecting 
suets and vegetable oils.

Now, take the second letter in each word, the following message emerges:

Pershing sails from NY June 1.

0 1 254 255

p q
Keystream

+

R[p] R[q]

Register R

FIGURE 19.3 The encryption mechanism in RC4 stream cipher.
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The transmitted message is called a stego-text. In modern times, some use spams as stego-
texts to embed hidden message. Note that embedding the plaintext inside a text message 
is not the only possibility—there are other techniques too. For example, embedding the 
secret message inside a picture is another popular approach. Consider a GIF image that 
is a string of pixels—one can hide the plaintext in the LSB of the pixels of the image. 
Such an embedding will cause no appreciable alteration in the appearance of the picture. 
Retrieving the plaintext from the stego-text is quite straightforward.

While cryptography is popular in implementing secure channels, an important applica-
tion of steganography is in digital watermarking, used for copyright protection and plagia-
rism detection. When the copyright (or the author’s identity) is embedded in the body of 
the document using steganography, a plagiarized copy of the original document will easily 
reveal the author’s true identity and expose plagiarism.

Steganography is not intended to replace cryptography, but supplement it. Concealing a 
message using steganographic methods reduces the chance of that message being detected. 
However, if the message is also encrypted, then it provides another layer of security.

19.6 PUBLIC KEY CRYPTOSYSTEMS
The need for a secure channel to distribute the secret conversation key between any two 
communicating parties is a major criticism against the secret-key encryption scheme. 
Public-key cryptosystems overcome this problem. In public-key cryptography, each user 
has two keys: e and d. The encryption key e is posted in the public domain, so we will call 
it a public key. Only the decryption key d is kept secret. No secret key is shared between its 
owner and any other party. The encryption function (E) and the decryption function (D) 
are not secret either. The main features of public-key encryption are as follows:

 1. The plaintext P = Dd(Ee(P)).

 2. The functions E and D are easily computable.

 3. It is impossible to derive d from e. So public knowledge of e is not a security threat.

Diffie and Hellman’s work [DH76] laid the foundation of public-key cryptography. To under-
stand this scheme, we first explain what a one-way function (also called a trapdoor function) 
is. A function y = f(x) is called a one-way function, if it is easy to compute y from x, but it is 
computationally intractable to determine x from y (even if f is known), unless a secret code 
is known. For example, it is easy to multiply two large prime numbers (>200 digits), but it 
is computationally intractable to find the prime factors of a large number containing more 
than 200 digits. Trapdoor functions are the cornerstones of public-key cryptography.

The next section explains the Rivest–Shamir–Adleman (RSA) cryptography that is the 
most popular version of public-key cryptography so far.

19.6.1 Rivest–Shamir–Adleman Cryptosystem

RSA encryption starts with the choice of an appropriate integer N = s × t, s and t 
being two large prime numbers. The plaintext is divided into equal-sized blocks of k bits 
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(k is between 512 and 1024), and the numerical value P of each block is less than N. The 
integer N is publicly known. The pair of encryption and the decryption keys (e and d) are 
chosen using the following steps.

 1. Choose a decryption key d, such that d and (s − 1) × (t − 1) are relative primes.

 2. Choose e such that (e × d) mod (s − 1) × (t − 1) = 1.

Once the keys are chosen, the encryption and the decryption functions for each block are 
as follows (C = ciphertext, P = plaintext):

 C P Ne= mod  (19.1)

 P C Nd= mod  (19.2)

Here is a sample calculation. Choose N = 143, which is the product of two primes s = 11 
and t = 13. Then, (s − 1) × (t − 1) = 123. We choose d = 7 since 7 and 120 are relative primes. 
The smallest value of e that can satisfy the equation (e × 7) mod 120 = 1 is 103. So, a possible 
pair of keys in this case is (103, 7).

Proof of RSA encryption
We first show that if C = Pe mod N, then the plaintext P can indeed be retrieved from the 
ciphertext C using the formula P = Cd mod N. Let Φ(N) be the number of positive integers 
that are (1) less than N and (2) relatively prime to N. Thus, if N = 12, then Φ(N) = 4 (since 
there are four integers 1, 5, 7, 11 that are relatively prime to 12). Clearly, for any prime num-
ber p > 2, Φ(p) = p − 1. The function Φ is called Euler’s totient function. The following two 
are important theorems from number theory:

Theorem 19.1

For any integer p that is relatively prime to N, pΦ(N) = 1 mod N.

Theorem 19.2

If N = p × q, then Φ(N) = Φ(p) × Φ(q).
Since N = s × t and s and t are prime numbers, using Theorem 19.2,
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Since s is a prime, using Theorem 19.1,

 P ss( ) mod− =1 1

 So where is an integer, mod { }( )( )P s rr s t− − =1 1 1

 Similarly, mod( )( )P tr s t− − =1 1 1

 Therefore, mod ( ) mod( )( )P s t Nr s t− − = × =1 1 1 1  (19.3)

According to the encryption algorithm, C = Pe mod N. Therefore,
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The encryption key is posted in the public domain. Only the decryption key is kept secret. 
Therefore, only the authorized recipient (who has the decryption key) can decipher the 
encrypted message, which guarantees confidentiality. In fact, due to the symmetry, the two 
keys are interchangeable.

The confidentiality is based on the fact that given e and N, it is not possible to derive d, 
since it requires the knowledge of the prime factors of N. The size of N makes it computation-
ally intractable for the intruder to determine s and t from N and thus to break the codes. This 
is a classic example of a one-way function that makes RSA a secure cipher. If somebody could 
design an efficient algorithm to find the factors of a huge integer, then RSA cipher could be 
broken. By combining the power of the state-of-the-art supercomputers (like those in NSA 
or FBI), 512-bit numbers can be factored in a reasonable time. Thus, to assure the security 
of the RSA cipher, the key length should be chosen sufficiently larger than that. Currently, a 
value of N in excess of 10200 (i.e., more than 800 bits) is recommended to guarantee security.

The speed of encryption and decryption is an important issue in real applications. 
Knuth presented an efficient algorithm for computing C = Pe mod N. Let e = ekek−1ek−2…
e2e1e0 be the (k + 1)-bit binary representation of the encryption key. Then, Knuth’s expo-
nential algorithm for efficiently computing C is as follows:

program Knuth’s algorithm for RSA encryption
define P: plaintext, C: ciphertext, e:=(k  +  1)-bit encryption key
C : = 1;  i:= k;
do k  ≠  0  →
 C:= C2 mod N;
 if ei  =  1  →  C:= C  ×  P mod N[] ei = 0  →  skip fi;
 k:= k  −  1
od
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Note that this algorithm requires at most k = log2e multiplications, instead of e multipli-
cations that a straightforward computation of C would require. Due to the symmetry, a 
similar algorithm can be used for decryption.

19.6.2 ElGamal Cryptosystem

In 1984, ElGamal presented a new public-key encryption scheme. Unlike RSA encryption 
whose security relies on the difficulty of factoring large primes, the security of ElGamal 
encryption relies on the difficulty of solving the discrete logarithm problem. We first pres-
ent a brief overview of the discrete logarithm problem.

Consider modulo arithmetic, specifically numbers mod q where q is a prime number. 
Take another positive integer g(g < q), and compute gx mod q for various positive val-
ues of x. If these values are uniformly distributed in the set {0,1,2,3,…,q − 1}, then g is 
called a generator. For example, consider q = 17 and g = 3, and verify that the values of 
3x mod 17 are uniformly distributed in the set {0,1,2,3,…,16}. Here, 3 is a generator of the 
multiplicative cyclic group {0,1,2,3,…,16}. The discrete logarithm problem asks the ques-
tion: If gx mod q = y and the values of q, g, y are all given, then compute x. For example, 
319 mod 17 = 10, but determining what value x will satisfy the equation 3x mod 17 = 10 
is not an easy problem.* Particularly, when the prime q is 200 digits long, or even lon-
ger, the problem becomes almost intractable. This intractability is the cornerstone of 
ElGamal cryptosystem.

Let G be a cyclic group {0,1,2,3,…,q − 1} and g be the generator of that group. To receive 
a message from Bob, Amy will randomly pick a number d from G as her secret key. She will 
then compute h = gd mod q and publish her public key e as (g, q, h). Bob will learn the public 
key of Alice.

To secretly send a plaintext message block P(0 ≤ P ≤ q − 1) to Alice, Bob will randomly 
pick a number y from G. He will then compute C1 = gy mod q, and C2 = P ⋅ hy mod q, and 
send the ciphertext C = 〈C1,C2〉 to Alice. Note that the length of C is double the length of 
the plaintext.

Amy will decrypt C and retrieve the plaintext by computing C C d
2 1⋅ − . To verify that it 

indeed retrieves the original plaintext P, observe that
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The encryption scheme could be broken if one could derive Alice’s secret key d from her 
public key e = (g,q,h), given that h = gd mod q and g,q,h publicly known. However, for very 
large q, this is the intractable part in the computation of discrete logarithm! Note that 
ElGamal encryption is probabilistic, in as much as a single plaintext can be encrypted to 
many possible ciphertexts depending on the choice of h.

* There may be multiple solutions.
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19.7 DIGITAL SIGNATURES
Digital signatures preserve the integrity of a document and the identity of the author. 
Signed documents are believed to be (1) authentic, (2) unforgeable, and (3) nonrepudiable. 
Consider the following secret communication from Amy to Bob:

I will meet you under the Maple tree in the Sleepy Hollow Park between 11:00 PM 
and 11:15 PM tonight.

To authenticate the message, the receiver Bob needs to be absolutely sure that it was Amy 
who sent the message. If the key is indeed secret between Amy and Bob, then confidential-
ity leads to authentication, as no third party can generate or forge such a message.

However, this is not all. Consider what will happen if following an unfortunate 
sequence of events, Amy and Bob end up in a court of law, where Amy denies having ever 
sent such a message? Can we prove that Amy is telling a lie? This requires a mechanism 
by which messages can be signed, so that a third party can verify the signature. Problems 
like these are quite likely with contracts in the business world or with transactions over 
the Internet.

The primary goal of digital signatures is to find a way to bind the identity of the signa-
tory with the message of the text. We discuss how a message can be signed in both secret 
and public cryptosystems.

19.7.1 Signatures in Secret-Key Cryptosystems

To generate a signed message, both Amy and Bob should have a trusted third party, Charlie. 
For the sake of nonrepudiation, Amy will append to her original message M an encrypted 
form of a message digest m (known as a message authentication code, or MAC). The message 
digest m is a fixed-length entity that is computed from M using a hash function H, which is 
expected to generate a unique footprint of M. (The uniqueness holds with very high prob-
ability against accidental or malicious modifications only.) In case of a dispute, anyone can 
ask the trusted third party, Charlie, to compute m′ = H(M) and compare the result with 
the signature m. The signature is verified only if m = m′. If the channel is not secret and 
confidentiality is also an issue, then Amy has to further encrypt (M, m) using her secret 
key k. The major weakness here is the need for a trusted third party who will know the 
secret key of Amy and Bob.

19.7.2 Signatures in Public-Key Cryptosystems

To sign a document in public-key cryptosystem, Amy will compute a digest m = H(M) of 
her message M using a hash function H, encrypt the digest m with her private key dA, and 
send out (M, dA(m)). Now Bob (in fact, anyone) can decrypt dA(m) using the public key eA 
of Amy and compare it with m′ = H(M). When m = m′, it is implied that only Amy could 
have sent the message M, since no one else would know Amy’s secret key. Digital signa-
tures using public-key cryptosystems is much more popular and practical, since it does not 
require the sharing or distribution of the private key.
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19.8 HASHING ALGORITHMS
Hash functions are used to reduce a variable length message to a fixed-length fingerprint. 
Also known as cryptographic hash function, such a function H should have the following 
properties:

 1. Computing m = H(M) from a given M should be easy, but computing the inverse 
function that will uniquely identify M from a given m should be impossible.

 2. M ≠ M′ ⇒ H(M) ≠ H(M′). Thus, any modification of the original message M will 
cause its footprint to change.

The second condition is difficult to fulfill for any hash function, so ordinarily, the inter-
pretation of M′ is restricted to malicious modifications of M. The number of (M,M′) pairs 
that lead to the same fingerprint is a measure of the robustness of the hash function. 
A well-known hash function is SHA-2 that was adopted by NIST after weaknesses were 
discovered in the two earlier hash functions MD5 and SHA-1. SHA-2 is a family of that 
includes two hash functions SHA-256 and SHA-512 with different block sizes. Many of 
the US government agencies now use SHA-2 for various security-related applications. 
SHA-2 hash function is also implemented in some widely used security applications and 
protocols like SSL/TLS, PGP, and SSH. In 2012, NIST selected a new hash function SHA-3 
that uses a new algorithm and not derived from SHA-2. As of now, the decision about 
adopting SHA-3 is pending.

19.8.1 Birthday Attack

The birthday attack is a cryptographic attack (on hashing algorithms) that exploits the 
mathematics behind the birthday paradox: if a function y = f(x) yields any of n different 
output values of y with equal probability and n is sufficiently large, then after evaluating the 
function f for about n  different arguments, we expect to find a pair of arguments x1 and 
x2 such that f(x1) = f(x2) with a probability p > 0.5—this is known as a collision.

Now, apply this to the birthdays of a set of people who assembled in a room. There are 
365 possible different birthdays (month and day). So if there are more than 365  people in 
the room, then we will expect at least two persons having the same birthday. In fact, it can 
be shown that with more than 23 people, the probability that two of them have the same 
birthday is > 0.5. If the outputs of the function are distributed unevenly, then a collision 
can occur even faster.

Digital signatures in secret-key cryptosystems are susceptible to birthday attack. A mes-
sage M is signed by first computing m = H(M), where H is a cryptographic hash function, 
and then encrypting m with their secret key k. Suppose Bob wants to trick Alice into sign-
ing a fraudulent contract. Bob prepares two contracts: a fair contract M and a fraudulent 
one M′. He then finds a number of positions where M can be changed without changing the 
meaning, such as inserting commas, empty lines, and spaces. By combining these changes, 
he can create a huge number of variations on M that are all fair contracts. In a similar 
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manner, he also creates a huge number of variations on the fraudulent contract M′. He then 
applies the hash function to all these variations until he finds a version of the fair contract 
and a version of the fraudulent contract having the same hash value. He presents the fair 
version to Alice for signing. After Alice has signed, Bob takes the signature and attaches it 
to the fraudulent contract. This signature apparently proves that Alice signed the fraudu-
lent contract. For a good hash function, it should be extremely difficult to find a pair of 
messages M and M′ with the same digest.

19.9 ELLIPTIC CURVE CRYPTOGRAPHY
Contrary to some beliefs, an elliptic curve is not the same as an ellipse.

An elliptic curve is defined by equation y2 = x3 + ax + b. There are more general versions 
of elliptic curves, but for our purpose, this will suffice. The coefficients of the equation must 
satisfy the condition 4a3 + 27b2 ≠ 0, which is a necessary and sufficient condition that the 
polynomial has three distinct roots, a condition required by the cryptosystem. The elliptic 
curve of Figure 19.4 is generated from the equation y2 = x3 − 6x + 6.

Let q, r be a pair of points on an elliptic curve. The curve is symmetric around a hori-
zontal axis (in this case the x-axis). For any point p, designate its mirror image (reflection 
around the x-axis) by the notation −p. The addition operation (+) is defined as follows:

 1. When q ≠ −r, q + r is computed by drawing a straight line through q and r. Let this 
line intersect the elliptic curve at point −p. Take the reflection of −p around the x-axis 
(which is p). Then q + r = p.

 2. When q = −r, the line joining them is vertical and parallel to the y-axis. This does 
not intersect the elliptic curve at a third point. This is addressed by including a spe-
cial third point ∞ on the curve. Call it the identity element I. Then q + (−q) = I. This 
implies q + I = q.

 3. When q = r, the sum q + q (also called 2q) is defined by drawing a tangent to the 
curve at point q. Let it intersect the elliptic curve at point −r. Then q + q = 2q = r (the 
 reflection of the point −r around the x-axis).
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FIGURE 19.4 An elliptic curve.
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The last step defines the multiplication (by two) operation that can be generalized to 
 multiplication by any nonnegative scalar integer by treating this as repeated addition. 
Thus, 3q = 2q + q = r + q = p. For a point like t where the tangent is parallel to the y-axis,
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and so on.
In cryptography, the variables and the constants are not real numbers—instead, they are 

always chosen from a finite field—as a result x, y, a, b have integer values assigned from a 
finite set of integers. The various values of (x, y) on the elliptic curve along with the addi-
tion operation and the identity element form an Abelian group. All computations are done 
modulo p, where p is a prime number.

Prior to a secret communication, both Amy and Bob must agree upon using a specific ellip-
tic curve (which is not a secret) and a specific point F on that curve. Amy then picks a secret 
random number dA that is her secret key, computes eA = dA ⋅ F, and publishes it as her public 
key. In the same manner, Bob will also pick his secret key dB and publish a public key eB = dB ⋅ F.

To send the secret message M, Amy will simply compute dA ⋅ eB and use the result as the 
secret key to encrypt M using a conventional symmetric block cipher (like 3DES or AES). 
To decrypt this ciphertext, Bob has to know the secret key of the block cipher. Bob will be 
able to compute this by calculating dB ⋅ eA, since
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The security of the previous scheme is based on the property of elliptic curves that given 
F and k · F, it is intractable to compute k when the keys are large (computationally, this is 
equivalent to the discrete logarithm problem discussed earlier). In the case of communica-
tion between Amy and Bob, eA = dA ⋅ F, both eA and F are known, but it is extremely difficult 
to compute the secret key dA. The same applies to the computation of dB, Bob’s secret key.

19.10 AUTHENTICATION SERVER
An AS (also called a key distribution center) is a trusted central agent whose responsibility 
is to distribute conversation keys among clients, prior to initiating an authenticated con-
versation. It is a tricky job that has to be done right to preserve the integrity of the keys. The 
schemes described here are due to Needham and Schroeder [NS78].
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19.10.1 Authentication Service for Secret-Key Cryptosystems

Let four users A, B, C, D be connected to an AS S. For each user i, the server maintains a 
unique key ki (like a password) that is only known to user i and the server S. This is differ-
ent from the secret key kij to be used in the conversation between users i and j. We will use 
the notation ki(M) to represent a message M encrypted by the key ki. Obviously, i is the only 
user who can decrypt it. Here is a summary of the protocol that user A will use to obtain a 
conversation key kAB between A and B:

A → S Give me a conversation key to communicate with B
S → A Retrieve kAB from the message kA(B, kAB, kB(kAB, A))
A → B Retrieve kAB from kB(kAB, A) that I obtained from S
B → A Yes, can you decode kAB(nB) and decrement the argument?
A → B Here is kAB(nB−1)

In the previous exchange, nB (called a nonce) is meant for single use. When B finds A’s 
answer to be correct, a secure communication channel is established between A and B.

To sign a document, A will first convert the original plaintext M into a digest m of a 
smaller size and then use the following protocol:

A → S Give me a signature block for the message m.
S → A Here is kS(m)—please append it to your message.

Now, A sends kAB(M,kS(m)) to B. To verify the signature, B computes the digest m′ from 
the message decrypted by it and sends it to S for signature verification. In response, S now 
sends back kS(m′) to B. If kS(m) = kS(m′), then B verifies the signature of A and hence the 
authenticity of the message from A.

Safeguard from replay attacks: This problem is related to the freshness of the message that 
is being transmitted. It is possible for an intruder to copy and replay the ciphertext, and the 
recipient has no way of knowing if this is a replay of an old valid message. Imagine what 
will happen if an intruder unknowingly replays your encrypted message to your banker: 
“Transfer $100 from my account to Mr. X’s account.” One way to get around this problem is to 
include a special identifier with each communication session. Ideally, such an identifier will 
be used only once and never be repeated—this is a safeguard against possible replay attack. 
For example, A, while asking for a conversation key from S, will include such an identifier nA 
with the request, and S will include that in the body of its reply to A. Such an integer is called 
a nonce. Typically, it is a counter or a time stamp. Prior to each message transmission, the two 
parties have to agree to a nonce. The reuse of the same nonce signals a replay attack.

19.10.2 Authentication Server for Public-Key Systems

It is assumed that everyone knows the public key eS of the server S. To communicate with 
B, A will first obtain the public key of B from the AS.

A → S Give me the public key eB of B
S → A Here is dS(eB)
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Now, A can decrypt it using the public key of the server S. This prevents A from receiving a 
bogus key eB from an imposter. B can obtain the public key from A in the same way. In the 
next step, A and B perform a handshake:

A → B eB(nA) Only B can understand it
B → A eA(nB, nA) Only A can understand it.
   A finds that B successfully received its nonce
A → B eB(nB) B finds that A successfully decrypted its nonce

Now A and B are ready to communicate with each other.

19.11 DIGITAL CERTIFICATES
A certificate is a document issued to a user by a trusted party. The certificate identifies 
the user and is like a passport or a driver’s license. When Amy wants to withdraw $5000 
from her account in Sunrise Bank, Iowa, Sunrise Bank needs to be absolutely sure that it 
is Amy who is trying to access her account. So Amy will produce a certificate issued by 
Sunrise Bank and signed by the bank’s private key. The components of a certificate are 
as follows:

 Name Amy Weber 
Issued by Sunrise Bank, Iowa
Certificate type Checking account number
Account number 1234567
Public key 1A2B3C4D5E6F
Signature of the issuer Signed using the private key of Sunrise Bank

In electronic banking, the web browser uses digital certificates to enhance the security 
of access. They are electronic counterparts to ATM cards and must be presented by the 
browser to the bank before the bank will permit the user access to her account. The bank 
ATM card stores an encrypted version of a digital certificate along with other information 
that may be needed by a financial institution. Used in conjunction with encryption, user id, 
and password, digital certificates provide an acceptable security solution.

In a slightly different scenario, when Amy wants to electronically transfer $5000 to a car 
dealership for buying her car, she presents the certificate to the dealership. The dealership 
will want to verify the signature of the bank using their public key. Once the signature is 
verified, the dealership trusts Amy’s public key in the certificate and accepts it for future 
transactions.

A public key infrastructure (PKI) is a mechanism for the certification of user identities by 
a third party. It binds public keys of each user to her identity. For verifying the authenticity 
of the public key of Sunrise Bank, the car dealership may check Sunrise Bank’s certificate 
issued by a higher authority. The chain soon closes in on important certification authori-
ties. These certification authorities sign their own certificates, which are distributed in a 
trusted manner. An example of a certification authority is Verisign (www.verisign.com), 
where individuals and businesses can acquire their public-key certificates by submitting 
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acceptable proofs of their identity. Public keys of important certification authorities are 
also posted on the WWW. The correctness of these keys is the basis of the trust.

A widely used certification format is X.509, which is one component of the CCITT’s* 
standard for constructing global directories of names. It binds a public key to a distin-
guished name, or an email address, or a DNS entry. In addition to the public key cer-
tificate, it also specifies a certification path validation algorithm. Note that the names 
used in a certificate may not be unique. To establish the credentials of the owner and her 
certificate (or the certificate issuer’s signature), references to other individuals or organi-
zations may be necessary. In PKI, the administrative issues of who trusts whom can get 
quite complex.

19.12 CASE STUDIES
In this section, we present three security protocols for the real world. The first one uses 
secret-key encryption, and the two others are hybrid, since they use both public-key and 
secret-key encryption.

19.12.1 Kerberos

Kerberos is an authentication service developed at MIT as a part of Project Athena. It uses 
secret keys and is based on the Needham–Schroeder authentication protocol. The func-
tional components of Kerberos are shown in Figure 19.5. Clients and servers are required 
to have their keys registered with an AS. Servers include the file server, mail server, secure 
login, and print server. The users’ keys are derived from their passwords, and the servers’ 
keys are randomly chosen. For enhanced security, an unencrypted password should nei-
ther travel over the network nor be stored on the client machine or even the AS database. 
Once a password is used, it must be immediately discarded. Client A planning to com-
municate with a server first contacts the AS and acquires a session key kA,TGS. This allows 

* Acronym for Comité Consultatif International Téléphonique et Télégraphique, an organization that sets international 
communications standards.
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FIGURE 19.5 The components of Kerberos.
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A to communicate with a ticket-granting service (TGS). A ticket is an entity that a client 
presents to an application server to demonstrate the authenticity of its identity. When the 
session key kA,TGS is presented to the TGS, it issues a session key that enables the client to 
communicate with a specific server for a predefined window of time.

A sample authentication and ticket-granting operation is outlined here:

A → AS Give me a key to communicate with TGS
AS → A Retrieve kA,TGS from kA,AS(kA,TGS,kAS,TGS(kA,TGS,A))
  (Here kA,TGS is A’s key for TGS, and kAS,TGS(kA,TGS,A) is the ticket)
A → TGS Here is my ticket kAS,TGS(kA,TGS,A) issued by AS.
  Now grant me a session key to contact server B.
TGS → A TGS retrieves kA,TGS and sends kA,TGS((kA,B,B,T),kB,TGS(kA,B,A,T))
  (A will retrieve the session key kA,B from it. T is the expiration time).
A → B kB,TGS(kA,B,A,T) (B will retrieve kA,B from this)

If a client asked only the AS to generate kA,B, then the reply would have been encrypted 
with kA,AS, and A would have to use kA,AS to decrypt it. This means entering the password 
for each session (it is a bad idea to cache passwords). In the two-step process, to obtain a 
session key for any other service, it is sufficient to show the ticket to TGS. The expiration 
time (usually 10 h) prevents the reuse of a stolen ticket at a later moment. The two-step 
process thus relieves the user from repeatedly entering the password, and this improves 
the security.

Although AS and TGS are functionally different, they can physically reside in the 
same machine. For small-scale systems, a single AS–TGS is adequate. However, as the 
scale of the system grows, the AS–TGS unit becomes a bottleneck. So Kerberos designers 
divide the network into realms across organizational boundaries. Each realm has its own 
AS and TGS.

After a successful login, clients use tickets to acquire separate session key for file servers, 
printers, remote login, or email. Initially, Kerberos 4 used DES for encryption, but it has 
been retired in Kerberos 5, which allows a range of more secure encryption methods—
these include 3DES, AES-128, and AES-256.

19.12.2 Pretty Good Privacy

On April 17, 1991, New York Times reported on an unsettling US Senate proposal. It is 
part of a counterterrorism bill that would force manufacturers of secure communication 
equipments to insert special trap doors in their products, so that the government could 
read anyone’s encrypted messages. The US government’s concern was to prevent encrypted 
communications related to clandestine operation with entities outside the United States. 
The US government was quite concerned about the rising circulation of RSA public-key 
encryption at that time. This led Philip Zimmermann to develop PGP cryptosystem in 
a hurry before the bill was put to vote. Zimmermann distributed PGP as a freeware. In a 
way, this bill led to the birth of PGP encryption, although the US government’s bill was 
later defeated.
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PGP is primarily used to encrypt emails. It is a hybrid cryptosystem that combines the 
best features of both private and public-key cryptography. To encrypt a message, PGP 
takes the following steps:

 1. It compresses the plaintext M. In addition to saving disk space and transmission 
time, data compression increases its resilience to cryptanalysis that relies on discov-
ering patterns in the plaintext.

 2. It generates a session key derived from the random movements of the sender’s mouse 
and the sender’s keystrokes. The session key is a one-time secret key.

 3. It encrypts (a) the compressed data with the session key and (b) also encrypts the ses-
sion key with the public key of the recipient. The two are then transmitted.

To decrypt the message, the recipient first retrieves the session key using her private key 
and then uses this key to decrypt (and subsequently decompress) the ciphertext.

While the use of public-key cryptography overcomes the key distribution problem, the 
encryption of the plaintext using secret keys is much faster than public-key encryption. 
PGP keys are 512–1024 bits long. Longer keys are cryptographically more secure. PGP 
stores the keys on the user’s hard disk in files called keyrings. The public keyring holds the 
public keys of parties that the sender wants to communicate with, and the private keyring 
stores the sender’s private keys.

19.12.3 Secure Socket Layer

The SSL protocol was developed by Netscape to establish secure communication between 
applications on the Internet. SSL 3.0 (available from 1996) received endorsements from 
the credit card giants Visa and MasterCard. SSL certifies the identity of the website to an 
online user and allows clients to communicate with servers while preserving confidential-
ity and integrity. The upper layer protocol is HTTP (for web service), or IMAP (for mail 
service), or FTP (for file transfer), and the lower layer protocol is TCP. These higher-level 
services process their requests through SSL. The upper layer protocol has two layers: a 
handshake layer and a record layer.

The handshake layer is the upper layer that provides three guarantees:

 1. At least one of the peers is authenticated using public-key cryptography.

 2. The shared secret key negotiated between the peers remains unavailable to 
eavesdroppers.

 3. No intruder can transparently modify the communication.

The initial handshake uses public-key cryptography and helps establish a shared 
secret key, which is subsequently used for secure communication. The following steps 
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illustrate the establishment of a secure shared key, when a client (Amy) communicates 
with a web server (Bob):

Amy: Sends a ClientHello: at this time, she presents Bob with (1) a session id, (2) protocol 
version (http here), (3) a list of block or stream ciphers (in order of preference) that is 
supported by her machine, (4) a set of message compression algorithms (like MD5, 
SHA-2) that is supported by her machine, and (5) a random data to be used for secret 
key generation.

Bob: Responds with a ServerHello: now Bob (1) picks a cipher of his choice and the mes-
sage compression algorithm to be used, (2) echoes the session id, and (3) sends ran-
dom data to be used for secret-key generation. Then Bob presents his certificate and 
(optionally) asks Amy for her certificate.

Amy: Verifies Bob’s certificate and presents her own certificate. Then she creates a pre-
master secret and sends it to Bob using his public key obtained from his certificate.

Bob: Verifies Amy’s certificate and decrypts the premaster secret using his private key.

Both Amy and Bob now move to the Client Key Exchange phase, where they use the 
 premaster secret and the random numbers to create a new master secret. Both will use the 
master secret to generate the session keys—these are symmetric keys that will be used to 
encrypt and decrypt information exchanged during the SSL session. When all these are 
done, Amy and Bob exchange a Change Cipher Spec message followed by a finished message. 
This  signals that they will use these keys for the rest of the session. The secure session can 
now begin.

The record layer is the lower layer that fragments the messages into manageable blocks, 
compresses the data, appends a message digest using the hash function from the agreed 
protocol suite, and encrypts, before transmitting it through the TCP connection. Received 
data are decrypted, decompressed, reassembled, and then delivered to the client.

SSL 3.0 has been later upgraded to TLS 1.0 [DA99], so the protocol is referred to as 
SSL 3.0/TLS 1.0. Despite many similarities, they are not interoperable. There is a potential 
for a man-in-the-middle attack in SSL, and TSL 1.0 initially claimed to address it. However, 
in 2009, the vulnerability of SSL 3.0/TLS 1.0 against a man-in-the-middle attack was made 
public. Despite its feasibility in laboratory scale experiments, there is no documented his-
tory of such industrial strength attacks. An absolute safeguard is to send the public key of 
the server to the client via a separate channel. The client can take advantage of browsers and 
some Internet software that are distributed via CD-ROMs for obtaining the public keys.

The various ciphers and the message digest functions are preloaded at each site. When 
a user communicates with a secure site on the WWW, she notices https:// instead of http:// 
in the URL. The word https means http using SSL.

The implementation of SSL uses hybrid encryption, where the mutual authentication 
is based on public keys, but final communication uses the secret keys. This is because 
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public-key-based encryption and decryption mechanisms are computationally  expensive—
so their use should be minimized as much as possible. Due to its extreme popularity in 
e-commerce, SSL/TLS is supported by almost all browsers.

19.13 VIRTUAL PRIVATE NETWORKS AND FIREWALLS
Unlike cryptographic solutions to security that are primarily implemented above the TCP/
IP layers, virtual private networks (VPNs) and firewalls provide security by tweaking some 
of the lower layers of the protocol stack.

19.13.1 Virtual Private Network

A VPN is a trusted communication tunnel between two or more devices across an 
untrusted public network (like the Internet). Businesses today are faced with supporting a 
broad variety of communications among a wider range of sites and escalating communi-
cation cost. Employees are looking to access the resources of their corporate intranets as 
they take to the road, telecommute, or dial in from customer sites. In addition, business 
partners share business information, either for a joint project of a few months’ duration 
or for long-term strategic advantage. Wide-area networking between the main corporate 
network and branch offices, using dedicated leased lines or frame-relay circuits, does not 
provide the flexibility required for quickly creating new partner links or supporting project 
teams in the field. The rapid growth of the number of telecommuters and an increasingly 
mobile sales force gobbles up resources as more money is spent on modem banks and long-
distance phone charges. VPN provides a solution to this problem without using leased 
lines or WAN.

VPNs rely on tunneling to create a private network that reaches across the Internet. 
Tunneling is the process of encapsulating an entire packet within another packet and send-
ing it over a network. The network understands the protocol of the outer packet and knows 
its endpoints (i.e., where the packet enters and exits the network). There are two types of 
endpoints for tunnels: an individual computer or a LAN with a security gateway, which 
might be a router (or a firewall). The tunnel uses cryptographically protected secure chan-
nels at the IP or link level (using protocols like IPSec or L2TP) and relieves the application 
layer from overseeing the security requirements. Tunneling has interesting implications 
for VPNs. For example, one can place a packet that uses a protocol not supported on the 
Internet inside an IP packet and send it safely over the Internet. Or one can put a packet 
that uses a private IP address inside a packet that uses a globally unique IP address to 
extend a private network over the Internet.

An obvious question is: Do we need VPN if we use SSL? What is the difference between 
the two? Protocols used to implement VPN operate at a much lower level (network or link 
layer) in the network protocol stack. The advantage of having the crypto bits at a lower level 
is that they work for all applications/protocols. On the flip side, to support this capability, 
extra software is needed. SSL caters to client–server communication, and the extra soft-
ware is already packaged into all web browsers.
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19.13.2 Firewall

A firewall is a filter between your private network (a zone of high trust) and the Internet 
(a zone of low trust). A personal firewall provides controlled connectivity between a per-
sonal computer and the Internet, whereas a network firewall regulates the traffic between 
a local network and the Internet. Firewalls can be configured according to an individual 
or an organization’s security requirements. They can restrict the number of open ports or 
determine what types of packets will pass through and which protocols will be allowed. 
Application layer firewalls can inspect the contents of the traffic and block inappropri-
ate materials or known viruses. Some VPN products are upgraded to include firewall 
capabilities.

19.14 SHARING A SECRET
Consider the following problem: Nine members of a family have their family treasures 
guarded in a safe that can be opened by a secret code. No individual should know this 
secret code. The locking mechanism should be such that the lock can be opened if and 
only if five or more of the members cooperate with one another. To protect data, one can 
encrypt it, but to protect a secret key, further encryptions will not help. One also needs 
to safeguard against a single point of failure that could destroy the key. Making multiple 
copies of the key appears to be a solution to the problem of single point of failure, but it 
increases the danger of a security breach—by not taking the majority into confidence, any-
one can open the safe himself or herself or with the help of a small number of accomplices.

What we are looking for is a mechanism of splitting a secret code. How to split a secret 
code and hand over the pieces to the members of the family, so that this becomes possible? 
In [S79], Shamir proposed a solution to the problem of sharing a secret key.

Shamir’s solution is as follows: let D be the secret code that we want to safeguard, n be 
the number of members, and k be the quorum, that is, the smallest number of members 
who must cooperate with one another to open the safe. Without loss of generality, con-
sider D to be an integer. Shamir used polynomial interpolation: Given k distinct points 
(x1,y1),(x2,y2),…,(xk,yk) on the 2D plane, there is one and only one polynomial q(x) of degree 
k − 1, such that ∀i : 1 ≤ i ≤ k : yi = q(xi). Now pick any polynomial q(x) of degree (k − 1):
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The only requirement here is that a0 = D, the secret code. Now, pick a set of values 1, 2, 3, …, n 
for x and use the above polynomial to evaluate D1 = q(1), D2 = q(2), D3 = q(3),…,Dn = q(n). From 
any subset of k of these (i, Di) values, one can find all the coefficients of q(x) by interpolation. 
This includes finding the value of a0 = D, the secret code. However, by using fewer than k of 
these values of Di, no one can derive D. So these n values D1,D2,D3,…,Dn can be distributed as 
pieces of the secret code, so that any k out of n holders of the pieces have to come together to 
decrypt the secret. Such a scheme is known as a (k, n)-threshold scheme for secret sharing. To 
avoid two disjoint quorums, it makes sense to make [(n + 1)/2] ≤ k ≤ n.
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The keys can be made more uniform in size by using mod p arithmetic, where p is a 
prime number larger than D and n. All keys will be in the range [0, p). The mechanism is 
robust: A loss of a single key or member poses no threat to the security. A new member can 
be added to the family by generating another key piece.

19.15 CONCLUDING REMARKS
Security is a never-ending game. The moment we think we have provided enough security 
to data or communication, crooks, hackers, and cryptanalysts start digging out loopholes. 
New algorithms are developed for operations whose apparent intractability provided the 
cornerstone of security. In addition, technological progress enables the development of 
faster machines with enormous computing power, which simplifies code breaking. Yet, 
electronic transactions in the business world have increased so much that we need some 
security—we cannot sleep with our doors open. Every web server installed at a site opens 
a window to the Internet. History shows that complex software usually has bugs—it needs 
a smart crook to discover some of them and use these as security loopholes. This reaffirms 
the importance of designing reliable software.

Digital certificates were proposed to authenticate transactions between parties unknown 
to each other. PKI was formulated to assist a client in making decisions about whether to 
proceed with an electronic transaction. Traditional PKI has come under criticism. The fact 
that online transactions are increasing rapidly without much help of PKI is paradoxical. 
Some find the traditional proof of identity to be intrusive. The one-size-fits-all electronic 
passport has been a topic of debate.

Since the past decade, phishing has been a major source of security fraud. According to 
the RSA Fraud report published by EMC, the total number of phishing attacks launched in 
2012 was 59% higher than that in 2011, leading to an estimated global loss of $1.5 billion 
in 2012. The fraudulent websites typically last for a week or less.

19.16 BIBLIOGRAPHIC NOTES
Although cryptography dates back to thousands of years, Shannon’s work laid the 
foundation of modern cryptography. Kahn [K67] provides the historical perspec-
tives. Schneier’s book [S96] is an excellent source of basic cryptographic techniques 
including many original codes. The official description of DES published by NIST 
is available from http://www.itl.nist.gov/fipspubs/fip46-2.htm. AES is described in 
[DR02]. Blowfish is described in Schneier’s book [S96], and Twofish was created by 
Schneier et  al. [SKW+98]. Diffie and Hellman [DH76] laid the foundation of public-
key encryption. RSA public-key cryptography is discussed in the article by Rivest et 
al.’s book [RSA78]. Needham and Schroeder [NS78] contains the original description 
of Needham–Schroeder authentication protocol. ElGamal cryptosystem is presented 
in [E84]. The distributed computing project Athena in MIT spawned many technolo-
gies, including Kerberos. Steiner et al.’s book [SNS88] contains a detailed description 
of Kerberos. A complete description of PGP is available from Garfinkel’s book [G94]. 
Miller [M85] (and independently Neal Koblitz) described elliptic curve cryptography. 
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An excellent tutorial by Certicom is available from http://www.certicom.com/index.
php/ecc-tutorial. Netscape developed SSL. The specification of SSL 3.0 appears in 
<draft-ietf-tls-ssl-version3-00.txt>. RFC 2246 by Dierks and Allen [DA99] describes 
TLS 1.0.

EXERCISES
19.1 Learning how to attack is an important component of learning about security meth-

ods. A well-known technique for breaking common substitution ciphers is frequency 
analysis. It is based on the fact that in a stretch of the English language, certain let-
ters and combinations occur with varying frequencies: For example, the letter E is 
quite common, while the letter X is very infrequent. Similarly, the combinations NG 
or TH are quite common, but the combinations TJ or SQ are very rare. The array 
of letters in decreasing order of frequency are E T A O I N S H R D L U … J, Q, 
X, Z. Basic frequency analysis counts the frequency of each letter and each phrase 
in the ciphertext and tries to deduce the plaintext from the known frequency of 
occurrences.

Search the web to find data about frequency analysis [L00]. Then use frequency 
analysis to decrypt the following cipher:

WKH HDVLHVW PHWKRG RI HQFLSKHULQJ D WHAW PHVVDJH
LV WR UHSODFH HDFK FKDUDFWHU EB DQRWKHU XVLQJ D
ILAHG UXOH, VR IRU HADPSOH HYHUB OHWWHU D PDB
EH UHSODFHG EB G, DQG HYHUB OHWWHU E EB WKH OHWWHU
H DQG VR RQ.

(Hint: Do a frequency analysis of the single letter in the ciphertext. Then try to 
match it with the frequency analysis data and discover the mapping.)

19.2 A simple form of substitution cipher is the affine cipher that generates the ciphertext 
for an English language plaintext as follows: (1) The plaintext is represented using a 
string of integers in the range [0..25] (a = 0, b = 1, c = 2 … and so on), and (2) for each 
plaintext letter P, the corresponding ciphertext letter C = a ⋅ P + b mod 26, where 
0 < a, b < 26 and a and b are relatively prime to 26.

Bob generated the ciphertext C by encrypting the plaintext P twice using two 
different secret keys k1 and k2. Thus, C = Ek1(Ek2(P)). Show that if affine ciphers are 
used for encryption, then the resulting encryption is possible using just a single 
affine cipher.

19.3 Your bank asked you to change your netbanking password. The previous password 
had six characters consisting of lowercase letters and integers. The new password 
will have at least eight characters—it must contain both upper and lower case let-
ters, integers, and a special character chosen from @,*,−,^,&. If you choose a new 
password whose length is 10 characters, then how much more effort (measured by 
the number of steps) will be needed to break your password compared with the pre-
vious scenario?
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19.4 What are the advantages and disadvantages of CBC over simple block ciphers?
19.5 Certain types of message digests are considered good for cryptographic checksums. 

Is the sum of all bits a good cryptographic checksum? Why or why not? Suggest a 
measure of this goodness.

19.6 Let W′ denote the bit pattern obtained by flipping every bit of a binary integer W. 
Then show that the following result holds for DES encryption

 C E P C E Pk k= ⇒ ′ = ′′( ) ( )

19.7 To authenticate a message m using ElGamal cryptosystem, Alice picks a hash 
function H and computes a message digest H(m). Then she (1) chooses a prime p 
and a random number k(0 < k < p) relatively prime to (p − 1), (2) finds numbers 
r and s such that r = hk (mod p) and H(m) = x ⋅ r + k ⋅ s mod (p−1) (such a pair (r, s) 
is guaranteed to exist when k is relatively prime to (p − 1)), and (3) sends the sig-
nature as (r, s). Bob verifies the signature as authentic, only if 0 < r, s < p−1 and 
gH(m) = hr ⋅ rs. Prove that the previous condition authenticates the message from 
Alice [see E84].

19.8 Consider the following protocol for communication from Alice to Bob:
a. Alice signs a secret message M with her private key, then encrypts it with Bob’s 

public key, and sends the result to Bob, that is, A → B : eB(dA(M)).
b. Bob decrypts the message using his private key dB and then verifies the signa-

ture using Alice’s public key eA, that is, eA(dB(eB(dA(M)))) = M.
c. Bob signs the message with his private key, encrypts it with Alice’s public key, 

and sends the result back to Alice, B → A : eA(dB(M)).
d. Alice decrypts the message with her private key and verifies the signature using 

Bob’s public key. If the result is the same as the one she sent Bob, she knows that 
Bob correctly received the secret message M.

Part 1: Show that this protocol violates confidentiality. Let Mallory be an active 
hacker who intercepts the encrypted signed message eB(dA(M)) communicated 
by Alice to Bob in step 1. Show that Mallory can use a modified protocol (by 
changing only steps (a) and (d)) to learn the original secret M without Bob (or 
Alice) noticing.

Part 2: Consider ways of repairing the protocol. Will the use of different sets of keys 
for signing/verification and encryption/decryption fix the problem?

19.9 The security of RSA encryption is based on the apparent difficulty of computing the 
prime factors s, t of a large integer N = s × t. Investigate what are some of the fast 
algorithms for computing the factors of N.

19.10 What are the advantages of elliptic curve cryptography over RSA?
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19.11 A company stores its payroll in a local server, and there are five employees in the 
payroll department. Access to payroll data requires a special password. Devise a 
scheme so that payroll data cannot be accessed unless any three out of five employees 
reach an agreement about carrying out the task. Implement your scheme, and pro-
vide a demonstration.

19.12 A birthday attack refers to the observation that in a room containing only 23 
people or more, there is a better than even chance that 2 of the people in the room 
have the same birthday even though the chances of a person having any specific 
birthday is 1 in 365. The point is, although it might be very difficult to find M 
from m = H(m), it is considerably easier to find two different messages (M,M′) 
with identical hash.

Using this fact, explain how birthday attacks can be used to get the signature of 
someone on a fraudulent document.

19.13 Experts are concerned about various kinds of loopholes in Internet voting. Study 
how Internet voting is carried out in practice, and think of how Internet voting can 
be misused.

Programming Exercises

19.1 Dr. Susan L. Gerhart and her team, with funding from NSF, designed a simple ver-
sion of DES (called S-DES). It is a block cipher that uses 8-bit blocks and a 10-bit key. 
See http://security.rbaumann.net/modtech.php?sel=2 for a description.

Design an encryption and decryption system working on printable ASCII text 
using S-DES. Consider only the letters from A to Z, a to z, the digits 0 to 9, and the 
two punctuation symbols: space (writing it as underscore) and period (this accounts 
for 64 symbols). Give a few examples of how to use your system.

19.2 PGP is a popular cryptosystem that helps the exchange of confidential email mes-
sages. Download and install PGP from its official website* to your personal com-
puter. Run PGPkeys (e.g., click on the PGPtray icon on your taskbar and choose 
Launch PGPkeys), and use the on-screen instructions to generate your initial pri-
vate key. To choose the key size, select the default option. Upload your public key to 
the keyserver using the on-screen instructions.

PGP stores your private key in a file called secring.skr. PGPfreeware guards your 
private key by asking you to invent a secret hint that only you will know.
Obtain public keys: To send encrypted email to someone, you need to get that per-
son’s public key. Obtain the public key of the TA or a friend, and add this key to your 
public key ring. There are several ways to do this:
1.  Look to see if the person has their public key on their web page. Copy that 

key in full to the clipboard, click on the PGP icon, and select “Add Key from 
Clipboard.”

* PGP freeware version 8.0 can be downloaded, for both PC and Mac, from http://www.pgpi.org/.
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2.  Look into the central keyserver where most people put their public keys (you did 
this in step 1). To do this, run PGPkeys, select Keys/Search, type (any part of) 
the person’s name or email address in the User id box, and click Search. If the 
key is found, then right-click on it and select “Import to Local Key ring.”

3.  Ask the person to send you their public key by email, and use the same method 
as in the prior step.

Encrypt your message: To send an encrypted message, choose a text file, right-click 
on it, and choose the PGP menu item that offers to encrypt it. Select (drag and drop) 
the name of the user for whom you want to encrypt; this will encrypt your message 
using the public key of the user. The result is a new file with the same name, but with 
an added .pgp extension.
Send email: To send the encrypted message, attach the .pgp file to your email. Check 
with the recipient to verify if she could decrypt it.

19.3 Team up with two other persons, and let these two run a communication across a 
communication channel that has not been secured. We suggest that you run the 
experiment on a dedicated network in a lab that is not being used by others. Now 
implement a man-in-the middle attack, and then divulge to the team members how 
you launched the attack.

19.4 Implement an application layer firewall that will block all emails containing a given 
topic of your choice.
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C h a p t e r  20

Sensor Networks

20.1 VISION
In the 21st century, the number of processors in daily use vastly outnumbers the laptops 
or desktop computers or personal digital assistants. Most gadgets that have become indis-
pensable for us contain one or more processors. A state-of-the-art automobile has 50 or 
more processors in it. These sense various conditions and actuate devices for our safety 
or comfort. With the advancement of technology, the physical size of the processors has 
diminished, and a new breed of applications has emerged that relies on miniature postage-
stamp-size processors sensing physical parameters and performing wireless communica-
tion with one another to achieve a collective goal. The primary job of a sensor network 
is tracking and monitoring. Estrin et al. [EGH+99] summarized the endless potential of 
sensor networks that range from ecological monitoring to industrial automation, smart 
homes, military arena, disaster management, security devices, sustainability, and health-
related application. Some of these applications have been developed during the past few 
years, and new areas of applications are constantly being explored. In addition, with the 
rapid penetration of smartphones that are equipped with a few sensors, new applications 
are emerging almost on a daily basis. These are slowly but surely transforming our daily 
lives and habits and will continue to do so in the foreseeable future.

The technology of networked sensors dates back to the days of the Cold War. The SOund 
SUrveillance System (SOSUS) was a system of acoustic sensors deployed at the bottom 
of the ocean to sense and track Soviet submarines. Modern research on sensor networks 
started since the 1980s under the leadership of Defense Research Advanced Projects 
Agency (DARPA) of the US government. However, the technology was not quite ready 
until the late 1990s.

Imagine hundreds of sensor nodes being airdropped on a minefield. These sensor nodes 
form an ad hoc wireless network, map out the location of the buried mines, and return 
the location information to a low-flying aircraft. Nodes may be damaged or swept away in 
wind and rain. In fact, the loss or failure of such devices is an expected event—yet the sheer 
number of these devices is often enough to overcome the impact of failures. As another 
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example in disaster management, randomly deployed sensor nodes in a disaster zone 
can help identify hot spots and guide rescuers toward it as quickly as possible. A  flagship 
 problem is to rescue people from one of the upper floors of a tall building where a fire 
breaks out, and two of the four stairwells are unusable due to carbon monoxide formation. 
These outline the kind of applications charted for sensor networks.

Some deployments of sensor networks are preplanned, as in automobiles or safety 
devices. Others are ad hoc in nature. Sensor networks can be wired or wireless. In this 
chapter, we will primarily focus on wireless sensor networks.

20.2 ARCHITECTURE OF SENSOR NODES
A wireless sensor network is a wireless network of miniature sensor nodes. These nodes 
sense various types of environmental parameters, execute simple instructions, and com-
municate with neighboring nodes within their radio range. The growth of sensor networks 
is largely due to the availability of miniature inexpensive sensors based on micro electro 
mechanical systems (MEMS) technology. With several vendors jumping in, users now have 
a choice of sensor nodes that can be used as the building blocks of sensor networks. In addi-
tion, many smartphones are equipped with camera, microphone, GPS, compass, and accel-
erometers, which have led to the development of various opportunistic and  participatory 
sensing technologies.

20.2.1 MICA Mote

The UC Berkeley researchers and their collaborators pioneered the design of a class of 
 sensor nodes called MICA® motes.* Several versions of these sensor nodes (MICA2, 
MICAZ) are now available for prototype design. A typical third-generation MICA mote 
consists of an 8-bit ATMEL ATMEGA 128L processor running at 4 MHz, with 128 kB of 
flash  memory for program storage and a 4 kB SRAM for read–write memory. It also has 
a 512 kB flash memory for storing serial data from measurements. The data are received 
via 10-bit analog-to-digital converters from sensor cards attached to it. The serial port 
is used for downloading programs from (or uploading results to) a desktop or a laptop 
PC. A  multichannel radio that can work at 868/916 or 433 or 315 MHz serves as the real-
world communication conduit. It can send or receive data at 40 kbps. The radio range is 
 programmable up to 500 ft, but the actual coverage depends on environmental conditions. 
Control signals  configure the radio to either transmit or receive or the power-off mode. 
A schematic  diagram of a MICA mote is shown in Figure 20.1.

Each mote is battery powered. Since the motes need to perform in unattended condi-
tions for a long time, energy conservation is a major issue, even if the battery technology 
has been improving. The radio consumes less than 1 μΑ when it is off, 10 mA when it is 
receiving data, and 25 mA when transmitting—so conserving radio power by minimizing 
communication is a key to longer battery life. The processor consumes only 8 mA when it 

* MICA mote is a product of Crossbow Technology. The data refer to MPR400CB. There is a range of products like this.
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is running, but only 15 μΑ in the sleep mode. To conserve energy, one can switch the mote 
to one of the several sleep modes. These include the following:

 1. IDLE mode that completely shuts off the processor and the radio.

 2. POWER DOWN mode that shuts everything off except a watchdog timer. It can help 
the processor set an alarm and wake up at an appropriate time.

In addition, researchers are constantly developing algorithmic solutions for energy 
 conservation directed to specific applications. An additional technique is energy harvest-
ing, where ambient energy in the environment is converted into electrical energy to power 
up the sensor nodes. Although the ambient energy is quite small (less than 100 μW/cm3), 
this merits further investigation in certain forms of applications. Important sources of 
ambient energy are solar, mechanical energy (vibration, finger movements), thermal energy 
( temperature gradients), etc.

20.2.2 ZigBee-Enabled Sensor Nodes

To facilitate the growth of wireless sensor networks in low-data-rate and low-power 
applications, the ZigBee alliance proposed an open standard based on the IEEE 802.15.4 
specification of the physical and the medium access control (MAC) layers. Low-data-rate 
applications require sensor nodes to occasionally wake up and carry out an action, but 
most of the time, they sleep. Numerous such applications are feasible in industrial  controls, 
medical devices, various alarm systems, and building automation. Due to the very low 
power demand, such nodes are supposed to last for a year or more with a single set of 
alkaline batteries. This is accomplished by carefully choosing the beaconing intervals and 
various sleep modes. These standards have been well received by the industry—as a result, 
many sensor nodes manufactured today are ZigBee compliant. An example is TelosB mote 
developed by the University of California, Berkeley.

ZigBee nodes communicate at 2.4 GHz, 915 MHz, and 868 MHz using DSSS technology. 
The 2.4 GHz band (also used by Wi-Fi and Bluetooth) is available worldwide and supports 
a raw data rate of 250 kbps. The 915 MHz band supports applications in the United States 
and some parts of Asia with a raw data rate of 40 kbps. The 868 MHz band is designed for 
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FIGURE 20.1 The architecture of a MICA mote.
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applications in Europe and supports a raw data rate of 20 kbps. ZigBee defines the lower 
layers of the protocol suite. Specifically, it adds network structure, routing, and security 
(e.g., key management and authentication) to complete the communications suite. On top 
of this robust wireless engine, the target applications reside. ZigBee 1.0 protocol stack was 
ratified in December 2004.

ZigBee and IEEE 802.15.4 support three kinds of devices: reduced functionality devices 
(RFDs), full-functional devices (FFDs), and network coordinators. Most sensor nodes in 
typical applications belong to the RFD class. An RFD is an end device that can only com-
municate with its parent node or a significant neighbor, but cannot act as a router. An 
FFD has the ability to act as a router. Finally, a network coordinator is the root of the 
network tree and has the ability to serve as a bridge connecting with other networks. For 
example, Stargate NetBridge is an embedded sensor network gateway device that connects 
the MICA motes to an existing Ethernet network.

ZigBee supports three different kinds of network topologies: (1) star network, (2) cluster 
tree (also known as a connected star), and (3) mesh network (Figure 20.2). A typical applica-
tion of the star configuration is a home security system. The cluster tree extends the tree 
topology by connecting multiple star networks. Finally, the mesh network helps build a 
sizeable system by accommodating a large number of wireless nodes and provides multiple 
paths between nodes to facilitate reliable communication. ZigBee networking protocol 
controls the topology by computing the most reliable paths and provides networks with 
self-healing capabilities by spontaneously establishing alternate paths (if such a path exists) 
whenever one or more nodes crash or the environmental conditions change.

(a) (b)

(c)

FIGURE 20.2 The three types of topologies supported by ZigBee: (a) star, (b) mesh, and (c) cluster 
tree. The white circles represent RFDs, the gray circles represent FFDs, and the black circles denote 
network coordinators (base stations).
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ZigBee supports three levels of security: (1) no security, (2) access control list (ACL), and 
(3) 128-bit AES encryption with authentication. The choice of the appropriate security level 
depends on the application and the resources available in the sensor nodes.

20.2.3 TinyOS® Operating System

TinyOS is an open-source component-based operating system for wireless sensor  networks 
and is designed to operate under severe memory constraints. It supports  networking, 
power management, and sensor interfacing for developing application programs. TinyOS 
is event driven—it consists of a scheduler and several components. Each component 
(Figure 20.3) consists of

 a. Event handlers to propagate hardware events to the upper levels

 b. Command handlers to send requests to lower-level components

 c. Tasks related to the application

A component has a set of interfaces for connecting to other components: this includes (1) 
interfaces that it provides for other components and (2) interfaces that it uses (there are 
provided by other components). Typically, commands are requests to start an operation 
and events signal the completion of an operation. For example, to send a packet, a com-
ponent invokes the send command that initiates the send, and another component signals 
the event of completing the send operation. A program has two threads of execution: one 
executes the tasks, and the other handles events. Task scheduling policy is FIFO. A task 
cannot preempt another task, but an event handler can preempt a task and other event 
handlers too.

TinyOS is programmed in NesC, an extension of the C language that integrates reactiv-
ity to the environment, concurrency, and communication. Components are accessed via 
their interface points. TinyOS has two types of components: modules and  configurations. 
A  module provides the implementation of one or more interfaces, and a configuration 
defines how the modules are connected together to implement the application. As an example, 
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FIGURE 20.3 A component of TinyOS.
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 consider this problem: four different motes (1, 2, 3, 4) have to periodically send messages to 
a base station (0). Here is a sample program for an application:

// Author: Kajari Ghosh Dastidar
//  This application periodically sends messages from four motes to 

the base station.
//  The TOS Address of the Base Station is 0. The Address of the 

other motes are 1,2,3,4.

module SendMsgM {
provides interface StdControl; 
uses {// the interfaces wired into the StdControl interface.
    interface Timer as Timer;
    interface SendMsg as SendMsg;
    interface ReceiveMsg as ReceiveMsg;
    interface StdControl as RadioControl;
    interface Leds;
    }
  }

implementation {
bool free; //  Boolean variable indicating when a message is 

received in buffer 
TOS_Msg buffer; // reserves memory for a message structure
      // (see $TOSDIR/types/AM.h for details on this)
uint8_t moteval[4]; // array contains data received from each mote. 

// moteval[i] contains the latest message 
from mote i.

uint8_t counter = 0;  //  some data to send (each mote is sending 
a data

// incrementing counter to the base station)

// This will be called by main to initialize the application
  command result_t StdControl.init() {
    call RadioControl.init();  // initialize the radio 
    call Leds.init();
    free = TRUE;
    return SUCCESS;
    }

// This will be called by main to start the application
  command result_t StdControl.start() {
     call Timer.start(TIMER_REPEAT,1024);  // set up the timer
    call RadioControl.start();  // start the radio
     return SUCCESS;
  }
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  // This will be called by main to stop the application. 
  //  Here, the program is designed to run forever till user breaks 

out of the application. 
  command result_t StdControl.stop() {
     call RadioControl.stop();
     return SUCCESS; 
    }

//  scheduling a message here. This task will be executed each time 
the Timer is fired.

  task void doMessage() {
    buffer.data[0] = counter;  // incremented counter in the message
    counter++;   //and increment for next time
    dbg(DBG_USR1, “***  Sent message from %d\n”, TOS_LOCAL_ADDRESS);

 // debug statement to check a program when
// running the simulation in TOSSIM

    call SendMsg.send(0, 1, &buffer);     
    } 

  // The following is required by the SendMsg interface 
  event result_t SendMsg.sendDone(TOS_MsgPtr whatWasSent,
  result_t status) {
 return status;
    }
event TOS_MsgPtr ReceiveMsg.receive( TOS_MsgPtr m ) {
    uint8_t i, k;
   i = m->data[0];    // get data from the message 
    k = m->addr;

    free=FALSE;   
    if (TOS_LOCAL_ADDRESS == 0) //  check the freshness of the 

data in the BASE.
     {
       if(moteval[k] != data[0]) moteval[k] = data[0];
       call Leds.redToggle();
  db g(DBG_USR1, “*** Got message with counter = %d from 

mote = %d\n”, i, j );
     }
    free = TRUE;
    return m;    //  give back buffer so future TinyOS 

messages have some
                   //  place to be stored as they are 

received.
    }
}
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 event result_t Timer.fired() {
    post doMessage();   // task doMessage is executed.
    return SUCCESS;
    }
  }

// This NesC component is a configuration that specifies
// how the SendMsgM module should be wired with other components
// for a complete system/application to send Active Messages to

the Base Station.

configuration SendMsgC {
}
implementation {
  components Main, SendMsgM, TimerC, LedsC, GenericComm as Comm;
  // rename GenericComm to be Comm 
Main.StdControl -> SendMsgM.StdControl;
SendMsgM.RadioControl -> Comm.Control; // the local name of 
StdControl
             // is just “Control” in GenericComm
SendMsgM.Timer -> TimerC.Timer[unique(“Timer”)];  // an unique 
instance of Timer is used here
SendMsgM.SendMsg -> Comm.SendMsg[3];   // msg type 3 will be sent
SendMsgM.ReceiveMsg -> Comm.ReceiveMsg[3];  // and also received
SendMsgM.Leds -> LedsC;   // LED is used here to show 
the transmission and 
                         //the reception of the messages
}

20.3 CHALLENGES IN WIRELESS SENSOR NETWORKS
This section highlights some of the important challenges faced by applications that use 
wireless sensor networks.

20.3.1 Energy Conservation

Algorithms running on sensor networks should be energy-aware for maximum battery 
life. Sensing, computation, and (radio) communication are three cornerstones of sensor 
network technology. Of these, sensing and computation are power thrifty, but communica-
tion is not.

The radio model for a sensor node is as follows: if Ed is the minimum energy needed to 
communicate with a node at a distance d, then Ed = K ⋅ dn. Here, n is a parameter whose 
value ranges between 2 and 4 depending on environmental parameters, and K depends on 
the characteristics of the transmitter.

For a given transmission energy, the radio range forms a disk (Figure 20.4a). All nodes 
within the radio range are neighbors of the sending node. The disk model is however some-
what simplistic—variations in the environmental characteristics (like the presence of objects 
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or obstructions) can distort the contour. Also, there are sensor nodes equipped with direc-
tional antennas—these are more efficient in transmitting in certain directions. However, 
unless otherwise mentioned, we will ignore these refinements and stick to the disk model.

As a consequence of the Ed = K ⋅ dn formula, the shortest Euclidean path between a pair 
of nodes is not necessarily the minimum-energy path. For example, in Figure 20.4b, if 
n > 2, then the path ACB between A and B will consume lesser energy compared to the 
direct path AB between them. The task of identifying an appropriate topology that reduces 
energy consumption and satisfies certain connectivity or routing requirements is the goal 
of topology control.

Studies on existing sensor hardware reveal that communicating a single bit across 
20 ft costs as much energy as required in the execution of 1000 instructions. Therefore, 
 minimizing communication is a major focus in energy conservation. Conventional 
 textbook models and algorithms are often inadequate for many sensor network applica-
tions. For example, shared memory algorithms require each process to constantly read the 
states of the neighbors, which steadily drains battery power. Message-passing algorithms 
optimize performance in terms of number of point-to-point messages, but do not use (or 
rarely use) local multicasts to the immediate neighborhood, which are clearly more energy 
efficient. This is because each point-to-point message is as expensive (in terms of power 
consumption) as a local multicast. Another technique for energy conservation is aggrega-
tion. An aggregation point collects sensor readings from a subset of nodes and forwards 
a single message by combining these values. For example, if multiple copies of the same 
data are independently forwarded to a base station, then an intermediate node can act 
as  aggregation point by suppressing the transmission of duplicate copies and thus reduce 
energy consumption. Furthermore, energy-aware algorithms must utilize the various 
power-saving modes supported by its operating system.

20.3.2 Fault Tolerance

Disasters not only affect a geographic region but also affect the monitoring infrastructure 
that includes the sensor nodes and the network. Node failures and environmental hazards 
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FIGURE 20.4 (a) The radio range of a sensor node P is a disk, and (b) if Ed = K ⋅ dn and n > 2, then 
the path ACB is more energy efficient than the shortest path AB.
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cause frequent topology change, communication failure, and network partition, adding to 
the fragility of wireless sensor networks. Such perturbations are far more frequent than 
those found in traditional LAN or WAN. Due to the ad hoc nature of the network, self-
stabilization is a promising method for restoring consistency. Tolerating failures and per-
turbations and maintaining the fidelity of information in spite of the fragile nature of the 
environment are fundamental goals of sensor networks.

20.3.3 Routing

Routing strategies in sensor networks differ from those in ordinary networks. Conventional 
routing is address-centric, where data are directed to or retrieved from certain designated 
nodes. Routing in sensor networks, however, is mostly data-centric—the base station que-
ries the network for a particular type of data (and may not care about which node generates 
that data), and the appropriate sensor nodes route the data back to the base station. Reliable 
routing requires identification of reliable data channels, energy-efficient routing requires 
data aggregation, and fault-tolerant routing relies on the network’s ability to discover alter-
native routes and self-organize when an existing route fails.

20.3.4 Time Synchronization

Several applications on sensor networks require synchronized clocks with high precision. 
For example, the precise online tracking of fast-moving objects requires a precision of 
1 μs or better. Unfortunately, low-cost sensor nodes are resource thrifty and do not have 
a  built-in precision clock—a clock is implemented by incrementing a register at regular 
intervals driven by the built-in oscillator. With such simple clocks, the required precision 
is not achievable by traditional synchronization techniques (like NTP). Furthermore, clock 
synchronization algorithms designed for LAN and WAN are not energy-aware. GPS is 
expensive and not affordable by the low-cost nodes. Also GPS does not work in an indoor 
setting since a clear sky view is absent.

20.3.5 Location Management

The deployment of a sensor network establishes a physical association of the sensor nodes 
with the objects in the application zone. Identifying the spatial coordinates of the objects, 
called localization, has numerous applications in tracking. The challenge is to locate an 
object with high precision. GPS is not usable inside large buildings and lacks the precision 
desired in some applications.

20.3.6 Middleware Design

Applications interact with the sensor network through appropriately designed  middleware. 
A query like What is the carbon monoxide level in room 1739? is easy to handle with an 
appropriate location management infrastructure. However, a data-centric query Which 
area has temperatures between 55 and 70 degrees? needs to be translated into low-level 
actions by the individual sensors, so that the response is generated fast and with minimum 
energy consumption. This is the job of the middleware.
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20.3.7 Security

Radio links are insecure. This means that an adversary can steal data from the network, 
inject data into the network, or replay old packets. Adversarial acts include surreptitiously 
planting malicious nodes that can alter the goals of the network. Such nodes can either be 
new nodes that did not belong to the original network, or these can be existing nodes that 
were captured by the adversary, and their memory contents altered with malicious codes. 
Another tool for the attack is a laptop-class node with high-quality wireless communi-
cation links—it can hoodwink other nodes into false beliefs about the network topology 
and force them to forward data to the attacker. The threats are numerous and need to be 
countered using lightweight tools, since sensor nodes have limited resources to implement 
countermeasures.

20.4 ROUTING ALGORITHMS
In wireless sensor networks, a base station (sometimes called a sink node) sends commands 
to and receives data from the sensor nodes. A primitive method of routing (data or com-
mands) is flooding, which is unattractive from the energy efficiency point of view. A better 
alternative is gossiping, where intermediate nodes forward data to their neighbors with a 
certain probability. Compared to flooding, gossiping uses fewer messages, and so consumes 
less energy. For reliable message delivery and energy efficiency, numerous routing methods 
have been proposed so far. In this section, we present some well-known routing algorithms.

20.4.1 Directed Diffusion

Directed diffusion was proposed by Intanagonwiwat et al. [IGE+02] for data monitoring 
and collection in response of data-centric queries. Assume that a sensor network has been 
deployed to monitor intrusion in a sensitive area. A sink node sends out queries about its 
interests down a sensor network to the appropriate nodes. The intermediate nodes cache 
these interests. A typical interest has a default monitoring rate and an expiration time. An 
example is monitor the northwest quadrant of the field for intrusion every minute until mid-
night. This dissemination of interests sets up gradients (a mechanism for tagging preferred 
paths based on their responsiveness) in the network (Figure 20.5). Data are named using 
attribute–value pairs. As sensor nodes generate data, the various paths transfer data with 
matching interests toward the originator of the interest. Depending on the responsiveness 
of these paths (or the importance of the event), a receiving node reinforces only a small 
fraction of the gradients. It does so by resending the interest with a higher asking rate. The 
reinforced gradients define the preferred links for data collection. This also prunes some 
neighbors since the interests in their caches will expire after some time. For example, if 
node i does not detect any intrusion but node j does, then the gradient toward node j is 
reinforced. Accordingly, in directed diffusion, with the progress of time, all data do not 
propagate uniformly in every direction. The gradient is represented by a tuple (rate, dura-
tion), where rate denoted the frequency at which data are desired and duration designates 
the expiration time of the request. A higher rate encourages data transmission, and a lower 
rate inhibits data transmission.
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Implementers can use various heuristics for quantifying gradient. During the initial 
propagation of an interest from the sink to the sources, all gradients (i.e., their rates) have 
the same value. In Figure 20.5, when the sink disseminates the interest, all links have a 
gradient with rate 1. When node 6 discovers that link (8,6) provides the desired data with 
a lower delay, it increases the gradient of that link to a higher value. Thereafter, node 3 
discovers that the data arrive through link (6,3) with a lower delay compared to the other 
links incident on it. So, it increases the gradient of link (6,3). In this process, eventually 
links (3,4), (4,2), and (2,0) are reinforced. New paths transmitting high-quality data get 
spontaneously reinforced, and poor-quality paths automatically drop out from the scene.

That directed diffusion consumes less energy compared to flooding is no surprise. 
Intanagonwiwat et al. [IGE+02] reports that it also consumes less energy compared to 
omniscient multicast.

20.4.2 Cluster-Based Routing

Cluster-based routing, also known as hierarchical routing, uses a two-level approach for 
routing data from the sensor nodes to the base station. The network is partitioned into 
clusters: each cluster has a cluster head, and a few nodes associated with it. The cluster 
heads receive data from the nodes in the cluster, aggregate them, and send them to neigh-
boring cluster heads. Eventually, the data get forwarded to the base station. If the clocks are 
synchronized, then intercluster communication can be scheduled at predefined time slots. 
Cluster-based routing is energy efficient, scalable, and robust.

20.4.2.1 LEACH
Low-Energy Adaptive Clustering Hierarchy (LEACH) is a self-organizing routing protocol 
that uses the idea of hierarchical routing (Figure 20.6a). It uses randomization to distribute 
the energy load evenly among the sensors. The protocol runs in phases. The first phase 
elects the cluster heads. The second phase sets up the cluster: here, each cluster head sends 
out advertisements inviting other nodes to join its cluster. A noncluster node makes the 
decision depending on the energy needed to communicate with a cluster head—the clus-
ter head that is reachable using the minimum energy is its best choice for that node. In 
the third phase, the cluster heads agree to a time schedule for transmission—the schedule 
helps avoid conflicts caused by overlapped transmission. The nodes that are not cluster 
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FIGURE 20.5 Directed diffusion in a sensor network. The route in bold lines has links with the 
highest gradient and is the preferred route for data transfer from a source to the sink.
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heads are notified about this schedule, which enables them to transmit data at appropriate 
times. The cluster heads are responsible for data aggregation and data compression, so that 
multiple data are bundled into a single message. LEACH saves energy via a reduction in the 
number of transmissions, and this extends the life of the network.

The cluster heads transmit the data directly to the base station (Figure 20.6a), so this is 
a high-energy transmission. They spend more energy than the rest of the nodes, running 
the risk of draining their battery sooner than others and causing a network partition. To 
prevent this imbalance in energy drainage, cluster heads are rotated via periodic reelection. 
When the residual power in a cluster head reaches below a certain level, a new cluster head is 
elected. Nodes with significant residual energy are expected to volunteer for becoming new 
cluster heads. This helps with energy load balancing and increases the life of the application.

20.4.2.2 PEGASIS
Power-Efficient GAthering in Sensor Information Systems (PEGASIS) is an improvement 
over LEACH in the sense that it requires less energy per round of data transmission. The 
sensor nodes form a chain, so that each node communicates with a close neighbor by 
spending a small amount of energy. Gathered data move from node to node and get fused, 
and eventually, a designated node (called the leader) transmits the data packet to the base 
station (Figure 20.6b). Nodes take turns to be the leader—this reduces the average energy 
spent by each node per round and balances the load. The task of building a chain that 
will expend the minimum energy to collect data can be reduced to the traveling salesman 
problem, which is known to be intractable; PEGASIS therefore uses a greedy protocol to 
form such chains, makes use of a variety of aggregation methods, and claims to reduce the 
per-round energy consumption of LEACH by a factor of 2 or better.

Cluster 1

Cluster 2

Cluster 3

Base station Base station

(a) (b)

FIGURE 20.6 (a) Cluster-based routing in LEACH: the cluster heads are shown as dark circles. 
(b) Data transmission in PEGASIS.
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20.4.3 Metadata-Based Routing: SPIN

Sensor protocol for information via negotiation (SPIN) defines a family of protocols that 
overcomes redundant data transmission (the major weak point of flooding or gossiping) by 
using metadata for negotiation before any actual data are transmitted. Two major  problems 
with flooding or gossiping are as follows:

 1. Implosion: A node receives multiple copies of the same data via different channels.

 2. Conflict: Multiple senders simultaneously send data to the same destination node.

Although there is 1-1 correspondence between real data and metadata, the protocol 
assumes that metadata are much smaller in size—therefore, less energy is expended in 
transmitting or receiving metadata compared to real data. Three types of data packets are 
used in SPIN:

 1. ADV: It is a metadata advertisement for new data to be shared.

 2. REQ: A node sends a metadata REQ (request for data) when it wishes to receive an 
advertised data.

 3. DATA: This is the real data with a metadata header.

SPIN uses a simple handshake protocol for data transmission. This is based on the sequence 
ADV–REQ–DATA. Data are sent only when a request is received based on metadata. If a 
node already received a copy of that data, then it does not send REQ, which suppresses data 
transmission. This naturally eliminates implosion. Conflict is avoided by sending REQ to 
only one sender at any time. In case of data loss, the protocol allows nodes a second chance 
to retrieve the data by sending a REQ to a duplicate ADV.

An enhanced version of SPIN allows the application to adapt to the current energy level 
of the node. It adapts itself based on amount of residual energy—participation in sending 
ADV or REQ is restricted when the residual energy level becomes low. Simulation results 
show that it is more energy efficient than flooding or gossiping while distributing data at 
the same rate or faster.

Finally, geometric ad hoc routing characterizes a class of routing algorithms where the 
nodes are location-aware, that is, each node knows its own location, the locations of its 
immediate neighbors, and that of the destination. There are several algorithms belonging 
to this class (e.g., see GOAFR+ [KWZ+03]).

20.5 TIME SYNCHRONIZATION USING REFERENCE BROADCAST
A few applications of wireless sensor networks rely on accurate synchronization among 
the local clocks for their success. The desired synchronization is much tighter than what 
we need for machines on the Internet. A protocol like NTP can synchronize clocks within 
an accuracy of a few milliseconds, whereas some critical sensor network applications need 
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clocks to be synchronized within 1–2 ms. Examples of critical applications that require 
precise time synchronization are as follows:

• Time of flight of sound: How much time did it take for sound to reach from point A to 
B? Such measurements are important for echo depth sounding that accurately maps 
out the bottom of a lake or an ocean.

• Velocity and trajectory estimate: A sniper fired a bullet toward a particular target in a 
busy location. From which window of the nearly multistoried building was the bullet 
possibly fired? The accuracy of the computation will depend on how closely the clocks 
of the sensor nodes sensing the bullet are synchronized.

• TDMA schedule: To avoid frame collisions and the consequent loss of message and 
energy, it is important for a cluster of sensor nodes to agree on a common TDMA 
schedule. To enforce such a schedule, all nodes have to agree to a common time frame.

For external synchronization (i.e., synchronization with a precise external time source), 
the nodes in a sensor networks can use GPS. However, apart from the additional cost, it 
is not feasible to access GPS data in indoor applications, or certain urban locations, or in 
hostile territories where GPS signals may be jammed.

20.5.1 Reference Broadcast

Reference broadcast (RBS)–based time synchronization provides a solution to time syn-
chronization when external synchronization is not important, and only internal synchro-
nization is adequate. RBS uses a broadcast message to synchronize the clocks of a set of 
receivers with one another. This is in contrast with traditional protocols that synchronize a 
receiver with the sender of the message. In the simplest form, RBS has three steps:

 1. A transmitter broadcasts a reference packet to a set of nodes.

 2. Each receiver records its local time when the broadcast is received.

 3. The receivers exchange these local times with one another.

RBS recognizes that a message broadcast on the physical layer arrives at a set of receiving 
nodes with very little variability in propagation delay (Figure 20.7a). Four components of 
time are taken into consideration during time synchronization:

Send time: Time to construct and transfer the message to the network interface.

Access time: Time spent in waiting for the transmission channel.

Propagation time: Actual flight time of the signal from the source to the destination 
node.

Receive time: Time required by the network interface to signal message arrival to the 
host.
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Unlike the Internet, message propagation time in sensor networks is of the order of a few 
nanoseconds and is therefore negligible. The other three components are more or less the 
same for all receiving nodes. The phase offset can be accurately deduced from a series of m 
RBS over n distinct sensor nodes. Let Ti,k and Tj,k be the local times of a pair of sensor nodes 
(i, j) when they receive the RBS from a node k. Then the average offset between nodes i and 
j from the reception of the RBS from m different nodes is
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The largest of these values represents the group dispersion. The mean dispersion is used to 
reset the clocks to the correct value.

Sensor nodes do not have built-in precise clocks—once the clocks are synchronized, due 
to the disparity in the oscillator frequencies, the clock skew will get worse over time. To 
keep the skew within tolerable limits, the clocks have to be periodically resynchronized. 
Experiments showed that with only two sensor nodes, by using 30 RBS, RBS could achieve 
an accuracy of 1.6 ms, beyond which it reaches a zone of diminishing return. Details of 
these experiments are available in [EGE02].

The previous method works for a single broadcast domain only. What about multiple 
broadcast domains? Figure 20.7b shows two broadcast domains overlapping with each 
other. Let Refs A and B send out the RBS in their respective domains. To relate the timings 
in these two domains, observations made by some node 2 that is common to both domains 
are crucial. As an example, let node 1 receive a message (at time T1) 100 ms after receiving 
the RBS from A (T1 = Ref A + 100 ms), and let node 3 observe an event (at time T3) 600 ms 
before receiving the RBS from B (T3 = Ref B − 600 ms). Both 1 and 3 will  consult node 2 
that received both RBS and find out that node 2 received the broadcast from A 1000 ms 
before the broadcast from node B (Ref A = Ref B − 1000 ms). From these, it  follows that 
T3 − T1 = 1000 − 600 − 100 = 300 ms.
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FIGURE 20.7 (a) Ref 0 broadcasts to sensors 1, 2, and 3 (δ1≈δ2≈δ3). (b) RBS-based time synchro-
nization over two broadcast zones A and B: node 1 receives a message at time T1 = 100 ms after 
receiving the broadcast from Ref A, node 3 receives a message at time T3 = 600 ms before receiving 
the broadcast from Ref B, and node 2 receives the broadcast from Ref A 1000 ms before receiving the 
broadcast from Ref B.
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Although designed to provide internal synchronization, RBS can also achieve external 
synchronization when one of the sensor nodes is equipped with a GPS receiver that can 
receive the UTC signal.

20.6 LOCALIZATION ALGORITHMS
Localization binds spatial coordinates with sensed data and is an important component in 
many applications of sensor networks. The central issue is to answer queries like “Where 
is this signal coming from, or where is an intruder currently located in this area?” Spatial 
coordinates are also useful for collaborative signal processing algorithms that combine 
data from multiple sensor nodes for the purpose of target tracking. The required coordi-
nates might be absolute or relative. It is implied that GPS is not attractive due to its cost, or 
physical size, or accuracy, or power consumption, or the absence of a clear sky view. In this 
section, we outline the principles of a few location management systems.

20.6.1 RSSI-Based Ranging

The simplest method of computing the distance of one node from another uses received 
signal strength indicator (RSSI). While sending out a signal, the sending node appends 
the strength of the sending signal. Given a model of how the signal strength fades with 
distance, the receiving node can compute its distance from the sender. One major problem 
here is the poor correlation between the RSSI and the distance. The accuracy is highly 
affected by the variability of the wireless medium. The problem is further compounded by 
the manufacturing variances of the radio devices and multipath effect (caused by reflection 
from neighboring objects).

20.6.2 Ranging Using Time Difference of Arrival

If the local clocks are synchronized and the sender sends a time-stamped signal, then the 
receiver can potentially compute the time of flight and deduce the distance separating 
them. In practice, this does not work well, since clocks are rarely synchronized with an 
accuracy <1 μs, whereas the time of flight is of the order of nanoseconds. A much bet-
ter accuracy is achieved using a combination of radio and acoustic waves. The Active Bat 
system is the first implementation of this concept. Each bat is tagged with a unique id, a 
radio receiver, and ultrasound transducers. The interrogator sends a query via radio “Bat 
32, send (ultrasound) signal now.” Bat 32 complies, the time of flight of the ultrasound is 
recorded by the interrogator, and the distance of the bat is computed from it. The technique 
is accurate and does not require time synchronization as long as clocks are stable over 
short periods of time. The indoor location system CRICKET [PCB00] at MIT used this 
approach to locate and track indoor objects with an accuracy of a few centimeters.

20.6.3 Anchor-Based Ranging

A straightforward scheme for localization uses a coordinate system defined by a set of 
 powerful nodes called beacons. The beacons serve as anchors and are positioned at known 
points in the area of interest. These beacons periodically broadcast their current coordinates. 
The spatial location of a sensor node is determined by (1) how many distinct broadcasts it 
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can receive and (2) the strength of the signals received for each broadcast. It is important 
that the sensor node receives at least three broadcasts from distinct beacons (Figure 20.8).

Using a direct ranging method like RSSI, the sensor node estimates its distances dA, dB, dC 
from the three anchors A, B, and C, respectively. If (x, y) is the coordinate of the sensor 
node in a given coordinate system and (xA, yA), (xB, yB), (xC, yC) are the coordinates of the 
anchors A, B, and C, respectively, then the following equations hold:
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Computation of (x, y) by solving these equations is known as triangulation or latera-
tion. Lateration produces good results only when the distance estimates are accurate. 
Unfortunately, simple RSSI-based ranging method is not accurate. The accuracy of mea-
surement can be increased if there are more than three anchors within the radio range of a 
sensor. This generalization is known as multilateration.

If the network contains multiple broadcast domains and the density of anchors is low, 
then the sensor node will obtain its distance from the anchors over multiple hops. To use 
lateration in such cases, each anchor maintains a shortest path tree with itself as the root. 
Distance from the anchors is estimated via the shortest paths.

20.7 SECURITY IN SENSOR NETWORKS
Most simple applications of sensor networks are vulnerable to attacks, since they have not 
been originally designed with security as a goal. The description of threats relates to a typi-
cal setup where a base station collects data from a bunch of sensor nodes in the physical 
space. We assume that the base station is always trustworthy.

One can classify adversaries into three different classes: passive, active, and mali-
cious. A passive adversary quietly steals unprotected data, or tampers data in transit, 
or launches a replay attack. Active adversaries can inflict much more damage. They can 
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FIGURE 20.8 The sensor k receives signals from the beacons A, B, and C.
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(physically) capture a node, extract the codes and keys, steal protected information using 
the stolen keys, or launch an attack by planting malicious codes into the captured nodes. 
PC-class adversaries can remotely influence many nodes and launch sinkhole or worm-
hole attacks by faking route information. Malicious adversaries try to harm the network. 
This includes (1) draining one or more nodes of energy and thus causing network parti-
tions, (2) tampering with the data (possibly in critical services like power plants, water 
supplies, hospitals) that could potentially harm the intended application, or (3) jamming 
the signals and disrupting communication in critical applications like anti-theft moni-
toring or military surveillance applications, so that an enemy can launch future attacks 
on the application without much difficulty. This section reviews a few security measures 
for sensor networks.

20.7.1 SPIN for Data Security

Due to limited resources, the implementation of conventional cryptographic protocols is 
impractical on sensor nodes: for example, effective public keys are long, and the commu-
nication overhead as well as the computation effort for its verification is very high. Only 
fast secret-key cryptography can be sparingly used. In [PSW+02], Perrig et al. introduced a 
cryptographic protocol (called SPIN) to secure sensor networks against passive adversaries. 
SPIN was designed to preserve confidentiality, integrity, authentication, and freshness (of 
data). The protocol works on a traditional setup where a base station communicates with the 
sensor nodes via source routing. Some sensor nodes may not be trustworthy. Messages may 
be corrupted in transit, but all messages are eventually delivered to the destination node.

SPIN consists of two components: a sensor network encryption protocol (SNEP) and 
μTESLA (microversion of Timed Efficient Stream Loss-Tolerant Authentication). A brief 
description follows:

20.7.1.1 Overview of SNEP
SNEP provides confidentiality (privacy), two-party data authentication, integrity, and 
freshness. Each node j shares a unique master key Kj with the base station. This master key 
is used to derive all other keys: these include the data encryption key, the MAC key, and 
a key for random number generation. SNEP derives a one-time encryption key using the 
value of a monotonically increasing message counter and the master key. This key is XOR-ed 
with the message bits and sent out. The message counter value is not explicitly transmitted, 
but the communicating processes independently keep track of it, and the eavesdropper 
has no knowledge about it. The recipient generates an identical key and XORs it with the 
ciphertext to retrieve the clear text. This preserves confidentiality. SNEP has the following 
properties:

 1. Since the same message gets transformed to different ciphertext in different transmis-
sions, cryptanalysis via plaintext attack is ruled out. This helps achieve semantic security.

 2. Replay attacks can be identified due to the use of the shared counter in the transmit-
ted message.
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 3. Message delivery guarantees weak freshness. Since the counter monotonically 
increases, the recipient only knows that the current message is more recent than the 
previous one, but does not know who transmitted it. The use of a nonce (using a ran-
dom number generator) will guarantee strong freshness.

After some evaluation, RC5 was chosen as the block cipher due to the small size of the code. 
The communication overhead of SNEP was 8 bytes per message.

20.7.1.2 Overview of μTESLA
This is a lightweight version of the TESLA protocol for authenticated broadcast that 
was designed for more heavy-duty platforms. Traditional authentication (mostly) uses 
 asymmetric key cryptography, which is not feasible for the resource-constrained sensor 
nodes. μTESLA uses symmetric key and authenticates messages by introducing asymme-
try through a novel method that involves delayed disclosure of the symmetric keys. Each 
MAC key is an element of a key chain that is generated using a public one-way function F. 
Consider a communication from the base station to the participant nodes in the network, 
and assume that the local clocks are approximately synchronized. The sender generates 
keys at regular time intervals, and there is a 1-1 correspondence between keys and time 
slots* (Figure 20.9). μTESLA generates the MAC key K(m) for interval m (m>0) using the for-
mula K(m) = F(K(m−1)). Here, F is a one-way function—everybody can compute K(m−1) from 
K(m), but only the base station can derive K(m) from K(m−1). When the base station sends out a 
packet at interval 0 using the MAC key K(0), the receiving node cannot authenticate it since 
it does not have the verification key. However, it is also true that no eavesdropper knows 
about it, so no one else could have generated the data. The receiving node simply buffers it.

Each verification key is disclosed after a couple of time intervals. For example, in 
Figure 20.9, the key K(0) has been disclosed after one time interval, after which the receiv-
ing node(s) can authenticate the buffered message sent with MAC key K(0). The loss of some 
of the packets disclosing the keys is not a problem. For example, if both K(0) and K(1) are lost, 
but the packet disclosing K(2) is received, then the receiving node(s) can easily generate K(1) 
and K(0) from it and complete the authentication.

20.7.2 Attacks on Routing

An active adversary can alter routing information (or plant fake routing information) to create 
routing loops, attract network traffic toward compromised nodes, or divert traffic through one 
or more target nodes for draining their energy and partitioning the network. There are several 

* The clocks are synchronized with a reasonable degree of accuracy.
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FIGURE 20.9 Broadcasting in μTESLA using a chain of MAC keys.
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different types of attack that seem feasible. In a selective forwarding attack, the  adversary 
(a  compromised node) drops important data packets to cause damage to the application. 
Sinkhole attacks lure network traffic toward compromised nodes, so that they can do whatever 
they wish with the data. To launch a sinkhole attack, a compromised node will falsely send out 
(or replay) an advertisement of a high-quality path to the base station. Wormhole attacks cre-
ate the illusion of a high-quality route by tunneling the data from one part of the network to 
another remote part via a low latency link. This link will use an out-of-bound channel that is 
only accessible to the attacker. The low latency path will attract traffic and create a wormhole. 
Wormhole attacks are likely to be combined with eavesdropping or selective forwarding.

20.7.2.1 Hello Flood
Many applications require nodes to periodically broadcast heartbeat (HELLO) messages. 
A PC-class adversary broadcasting such a message to a large number of nodes in the net-
work can convince every such node that it is a neighbor. When this adversary advertises a 
high-quality route leading to the base station, other nodes will adopt this route and send 
their data to the adversary, which may never be forwarded to a destination. It effectively 
creates a sinkhole (also called a black hole) using a slightly different method.

While all of the previous attacks take place in the network layer, protocols in other layers 
are also susceptible to attack. For example, jamming attacks the physical layer, and the use 
of DSSS helps avoid it (unless the attacker knows the precise hopping sequence). In addi-
tion to these general attacks, specific algorithms can also be attacked. Some of these attacks 
are easy to defend, but for many others, effective countermeasures are necessary. Finding 
effective countermeasures is an important topic of research.

20.8 APPLICATIONS
In recent times, wireless sensor networks are being increasingly used, in many cases on 
an experimental basis, in health-care, sustainability, and surveillance-related applications. 
There is a growing effort to build smart applications that require less human intervention, 
yet achieve the same or a higher level of efficiency in terms of end goal or energy usage. 
A small fraction of these applications is summarized in the following.

20.8.1 Health-Care Applications

Wearable ambulatory medical sensors enable people to monitor important physiological 
parameters while engaged in the activities of everyday life. These target fitness enthusiasts 
as well as aging populations who are concerned about their health. Such embedded sen-
sors are capable of communicating with smartphones or PDAs using short-range tech-
nologies like Bluetooth. Even prosthetic devices with embedded sensors have emerged. For 
the aging population, wireless communication enables medical data to be transmitted to 
caregivers, facilitating ubiquitous real-time sensing. As an example, Harvard University’s 
CodeBlue project [GPS+08] integrated various medical sensors with mote-class devices. 
A publish-/subscribe-based network architecture supports data dissemination with dif-
ferent priorities and remote sensor control. CodeBlue also allows victims of disasters to be 
tracked and localized using radio-frequency-based localization techniques.
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In epidemiology, the failure to comply with appropriate hand hygiene by the health-
care workers in the hospitals leads to millions of infections that are preventable. At the 
University of Iowa, the computational epidemiology group has developed a wireless-mote-
based data-collection system to capture health-care worker hand-hygiene behavior along 
with health-care worker interactions over time and space [HNS+12].

20.8.2 Environment Monitoring and Control

With the growth of cloud computing and cloud-based services, the number of data centers 
is rapidly increasing. Each data center has thousands of servers, and these servers consume 
a substantial amount of energy. This generates heat, and to prevent overheating, cooling 
becomes essential, which costs energy. In fact, energy is the single largest operating expense 
for most data centers. Improving the energy performance of data center systems reduces 
the operating costs as well as cuts down greenhouse gas emission. Sensors placed near the 
servers relay the data about energy consumption and climatic conditions to a base station 
that initiates appropriate measures for fine-grained climatic control to conserve energy. 
Studies sponsored by the US Department of Energy (DOE) and the US Environmental 
Protection Agency (EPA) have shown that energy consumption can be reduced by 25% 
through implementation of best practices and commercially available technologies.

20.8.3 Citizen Sensing

Citizen sensing or people-centric sensing aims at sensing and collecting various kinds of 
environmental data that are of interest to the citizens of a community in their daily lives. 
Several projects have addressed this issue. These include the urban sensing project at the 
Center for Embedded Network Sensing (CENS), the University of California at Los Angeles, 
the Hourglass project at Harvard, the CarTel project at MIT [HBC+06], and Dartmouth’s 
MetroSense project [CEL+08]. Each one of these developed an infrastructure for general pur-
pose sensing at Internet scale. Sustainable design, healthy living, and effective stewardship 
of the world’s limited resources require a solid understanding of how countless individual 
actions generate global effects and how individuals relate to their local environments—both 
natural and man-made. Citizen sensing targets technologies and applications that increase 
our capacity to help individuals, families, and communities monitor and improve their 
health, monitor pollution, adopt sustainable practices in resource consumption, and partic-
ipate in civic processes. Data collection and analysis uses, in addition to sensors embedded 
at various locations, everyday technologies like mobile phones and automobiles, and some 
of these projects allow individuals to decide what, where, and when to sense.

20.8.4 Pursuer–Evader Game

Pursuer–evader game is an online tracking system relevant to disaster management. Here, 
the rescuers pursue or track the hot spots in a disaster zone (these are the evaders). The goal 
of the pursuer is to catch the evader using the information gathered by a sensor network. If 
the evader is successfully tracked down, then the rescue/recovery begins. Demirbas et al. 
[DAG03] proposed the first set of solutions to the problem. This section outlines the prob-
lem specifications and presents one of their solutions.
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Assume that the topology of the sensor network is a connected graph. The pursuer and the 
evader are two distinguished entities moving around in the Euclidean space that is constantly 
being monitored by the sensor nodes. In each step, these entities are able to move from the 
radio range of one sensor node to the radio range of a neighboring node* (Figure 20.10). Nodes 
may crash, or their states may be altered by transient failures. Exactly one node can sense the 
presence of the pursuer or the evader at any time. We further assume that the evader is omni-
scient—it knows the network topology as well as the current location of the pursuer and can 
pick appropriate moves to distance itself from the pursuer. However, the pursuer does not have 
much knowledge beyond its immediate neighborhood, and nobody has any knowledge about 
the strategy of the evader. The pursuer catches the evader when both of them reach the radio 
range of the same sensor node. The reaction time of the sensor nodes is much smaller than 
the time needed by the evader or the pursuer to move—so we assume that each sensor node 
executes an action or detects the evader within its range in zero time. Furthermore, the pur-
suer moves faster than the evader, and the local clocks of the sensor nodes are synchronized.

The evader-centric solution proposed in [DAG03] is as follows: the motes collectively 
maintain a tracking tree rooted at the evader. As the evader moves, the motes detect it and 
reconfigure the tracking tree. The pursuer moves up the tree edges to reach the evader at 
the root. The two activities run concurrently.

For each node k, we use the following notations:

• Evader @k (or pursuer @k) designates that currently, the evader (or the pursuer) is 
residing in the radio range of node k.

• N(k) represents the neighbors of node k.

• P(k) parent of a node k in the tracking tree.

• T(k) designates the time when the evader was last seen. This information can be 
obtained from direct observation or through indirect observation via a neighbor.

• d(k) represents that node’s hop distance from the root via tree edges.

* In real life, this is not necessarily true—it is a simplifying assumption only.
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FIGURE 20.10 Two stages (a) and (b) of the pursuit as the evader moves to a new location.
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The programs of the evader, the pursuer, and the sensor nodes are presented as follows:

{The evader’s program}
{Evader moves from one node to another}
do evader@j → evader@k  :  k  ∈  N(j) od
{The program of a sensor node j}
initially T(j)  =  0{This is a simplifying assumption only}
do evader@j  →  P(j):=  j  ;T(j)  =  clock of j; 
[] ∃k  ∈  N(j):(T(j)  <  T(k)  ∨  T(j)  =  T(k)  ∧  d(j)  >  d(k)  +  1)→
  P(j):=  k; T(j):=  T(P(j)); d(j):=  d(P(j))  +  1
od
{The pursuer’s program}
{Pursuer moves to the parent node in the tree}
do pursuer@j→pursuer@P(j) od

Assume that the system runs under a distributed scheduler that allows maximal parallel-
ism, so that all eligible nodes execute their actions in each step. Then the following results 
hold for the previous algorithm:

Lemma 20.1

After a node detects the evader, a tracking tree is formed in at most D steps, where D is the 
diameter of the sensor network.

Proof outline: We first argue that the edges joining a sensor node with its parent induce 
a spanning tree in the network. Since ∀k : d(k) = d(P(k)) + 1, in the steady state, there will 
be no cycle involving the edges between the nodes k and P(k). Also, ∀k : T(P(k)) ≥ T(k), 
and no time stamp can exceed that of the root. Therefore, any node will have a directed 
path from itself to the root by following the parent pointers. Once a node detects the 
evader and becomes the root, the farthest node is guaranteed to adjust its d and P values 
within D steps. ◾

Theorem 20.1

Let M be the initial separation between the pursuer and the evader and α be the ratio 
between the speed of the evader and that of the pursuer (α < 1). Then, the pursuer catches 
the evader in at most M + 2M × ⌈α/(1−α)⌉ steps.

Proof outline: As a consequence of Lemma 20.1, the pursuer takes at most M steps to 
 orient its parent pointer in the right direction. By that time, the evader may move at most 
M steps away, so the distance between the pursuer and the evader may grow to at most 2M.

Once the separation grows to the maximum, the hop distance between the pursuer and 
the evader can never increase thereafter. To see why, consider a path j, j + 1, j + 2, …, 
k − 1, k between the evader j and the pursuer k. Actions taken by either of them can only 
reduce the length of the path—if j moves away, then eventually, k closes in, since it is faster 
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than j. So, in reality, the hop distance will eventually decrease. If x is the number of steps 
until the evader is caught after the chase begins, then in the same time, the purser will 
cover 2M + x steps, whereas the evader can take at most x steps. Thus, α = x/(2M + x). So, 
x = 2M ⋅ α/(1−α). Add to it the initial number of M steps that the pursuer took before it 
 correctly oriented its parent pointer, and the result follows. ◾

This algorithm is however not energy efficient. In each step, every node has to broadcast 
to each of its neighbors (the shared memory simplifies program writing, but true com-
munication takes place via message passing). The original paper by the authors contains 
algorithms that are more energy efficient than this, but the pursuit is slower.

20.9 CONCLUDING REMARKS
Sensor network technology is growing at a rapid pace. Energy conservation remains a 
 challenge in computationally intensive applications, and the quest for more powerful  sensor 
nodes, better batteries, and better sensors continues. Energy harvesting from the environ-
ment remains an attractive option for solving the energy problem in certain classes of appli-
cations. Also, security issues are receiving increased attention as the technology is making 
inroads into sensitive areas like medical applications or surveillance-related activities.

A related device that plays a supporting role in some embedded systems is the 
 radio-frequency identification tag (RFID). An RFID is a small tag that can be attached to 
a physical object—the tag contains the description of that object (like manufacturer, type, 
serial number). The antenna on the tag enables it to receive and respond to radio-frequency 
signals from an RFID reader. Passive tags have no internal power source. They are cheaper 
and have a smaller range (a few feet), but active tags have internal power sources and a 
much larger range (a 100 ft or more). RFIDs can potentially enhance the development of 
some sensor network applications in embedded systems.

20.10 BIBLIOGRAPHIC NOTES
Networks of sensors placed at the bottom of the ocean have been used to track  submarines 
during the Cold War: a history of the early developments can be found in [CK03]. The 
genesis of modern wireless sensor networks is the Active Badge system by Want et al. 
[WHF+92]. The current version of MICA motes is based on the research at the University 
of California, Berkeley. These are now commercially available from Crossbow Technology. 
Hill designed the operating TinyOS [HSW+00] that runs on MICA motes. The original 
version was only 172 bytes in size. Hill’s MS thesis contains a complete description of it. 
Harter and his associates [HHS+99] led the Active Bat project. The paper by Priyantha 
et al. [PCB00] contains the first report on MIT’s indoor location system CRICKET. They 
developed this indoor GPS for tracking mobile robots in the laboratory using a combina-
tion of radio and acoustic waves and achieved an angular precision of 2°–3° and a linear 
precision of a few centimeters.

In routing, the paper by Intanagonwiwat et al. [IGE+02] describes directed diffusion. 
The cluster-based routing protocol LEACH is due to Heinzelman et al. [HCB00]. Lindsey 
and Raghavendra [LR02] proposed the energy-efficient routing protocol PEGASIS. 
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Elson et al. [EGE02] showed how RBS can be used to synchronize clocks using off-the-shelf 
wireless Ethernet components.

The security protocol SPIN was presented by Perrig et al. [PSW+02]. The article by Karlof 
and Wagner [KW03] provides a summary of various security concerns in routing, along with 
some possible countermeasures. The CodeBlue project by Gao et al. [GPS+08] illustrates a 
range of medical monitoring applications. Pursuer–evader games were listed as a challenge 
problem by DARPA. The solution presented here is due to Demirbas et al. [DAG03].

EXERCISES

20.1 Consider the placement of the sensor nodes on a 2D grid (Figure 20.11):
Let Ed

 = K ⋅ d3 where Ed is the energy needed to send data at a distance d and the 
energy needed to receive data is negligible. Then determine how the data from A to 
B should be routed so that the total energy spent by all the nodes in the path is the 
minimum. How will the route change if the energy equation is Ed = K ⋅ d1.9?

20.2  Consider a tree construction algorithm with the base station as the root. The base 
station initiates the construction by sending out beacons. Each node chooses 
another node from which it receives a beacon packet with the lowest hop count as its 
parent node. The plan is that sensor data will be forwarded towards the base station 
via the parent node via a BFS tree.

Unfortunately, links are not always bidirectional: if node A receives a signal from 
node B, then B may not receive the transmission from A. As a result, this tree will 
not ensure reliable data collection from all the nodes in the tree to the root. Modify 
the algorithm to construct a tree that enables reliable data collection from all the 
sensors nodes.

20.3  If sensor nodes do not physically move, then what can cause the topology of a sensor 
network to change? List all possible reasons.
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FIGURE 20.11 Seven sensor nodes placed on a 7 × 7 grid.



Sensor Networks   ◾   461  

20.4  Uncoordinated transmissions can interfere with one another, causing conflicts 
in the MAC layer. When two neighbors concurrently transmit or a node receives 
 concurrent transmissions from two other nodes, the messages are garbled. This 
triggers message retransmission and wastes energy.

Consider the network of Figure 20.12a. Assuming that the local clocks are 
 synchronized, consider coordinating the transmissions to avoid such conflicts 
using TDMA. Your answer should specify which time slots can be used by a node to 
transmit data. Your goal should be to maximize the transmission rate.
a.  If time is divided into five slots—0, 1, 2, 3, and 4—as shown in Figure 20.12b, then 

find an assignment of the slots for the nodes in the network shown in part (a).
b. Relate this exercise to the problem of graph coloring.

20.5  Four beacons, A, B, C, and D, are placed at the coordinates (20, 30), (20, 60), (50, 10), 
and (50, 60), respectively (Figure 20.13). Using RSSI, a sensor node finds out that its 
distances from A, B, C, and D are 20, 40, 35, and 45 units, respectively. Show how the 
sensor node will compute its location, if it knows the coordinates of A, B, C, and D.

012
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Time slots

Base station

(a) (b)

FIGURE 20.12 (a) A set of sensor nodes using TDMA to avoid MAC level interference. (b) The 
available time slots.
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FIGURE 20.13 Four beacons—A, B, C, and D—used for the localization of a sensor node.
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20.6  Four sensor nodes and a base station placed on a 2D area form an ad hoc network 
(Figure 20.14). These nodes will sense physical parameter and send them to a base 
station, which will transmit the collected data to a remote laboratory. Assuming 
Ed  = K ⋅ d3, where Ed is the energy needed to send data at a distance d,
a. Determine the best location for placing the base station so that the energy spent 

by all the nodes is as small as possible.
b. Identify the data transmission paths from the sensor nods to the base station.

20.7  Given a network G = (V, E), topology control generates a subgraph G′ = (V, E′), such 
that (1) E′ ⊆ E, and (2) less energy is needed to route packets between a pair of nodes in 
G′ (than in G). The XTC algorithm for topology control by Wattenhofer and Zollinger 
[WZ04] has three steps: (1) Each node generates a ranking of its neighbors based on the 
strength of the signals received from them. (2) Each node exchanges the ranking with its 
neighbors. (3) Based on the information collected so far, nodes discard some of the links.

The strategy for including (or discarding) an edge is as follows: for a pair of nodes 
u and v that are neighbors of node w in the original graph G, u ≺w v implies that 
the signal strength from node u is weaker than the signal strength from node v as 
perceived by node w.

Per XTC, node u will want node v as a neighbor (i.e., the signal strength is good) 
if node v wants u as a neighbor. As an example, consider a subnetwork of four nodes 
u, v, w, and x and their local rankings of the neighbors are shown in Figure 20.15. 
Here, (v, x) is a preferred edge for both v and x since they locally rank each other at 
the highest order. Then prove that
a. If (u → v) is a preferred edge for node u, then so is (v → u) for node v
b. The topology of the resulting graph is triangle-free
c. For disk graphs, the degree of each node is at most 6

(Hint: See [WZ04] for a solution.)
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FIGURE 20.14 Find the best location of the base station here.
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20.8  In a sensor network, the battery of some highly active nodes can run out quickly 
and cause a network partition. Assume that each node k has a variable R(k) that 
records its residual battery power and each node can access the variable R(i) of every 
neighbor i. To extend the life of the sensor network, nodes with low battery need to 
go to sleep for a specific period of time.

Propose an algorithm using which a node can reroute traffic toward the 
base  station before it goes to sleep. For scalability, the time complexity of the 
rerouting algorithm must be low (preferably O(1)). Explain how your algorithm 
will work.

20.9  Broadcasting of data is an important activity in sensor networks. A sensor initiates 
the broadcast with a certain energy level Ed that is able to reach all nodes at distance 
≤d and Ed = K ⋅ d2. The recipients forward these data via additional broadcasts, and 
this process continues until all sensors receive the data. These operations form a 
broadcast tree, where the initiator is the root and for every other node, the closest 
sender sending the broadcast to it is the parent. The goal of the exercise is to com-
plete the broadcast using the minimum amount of energy.

In the sensor network of Figure 20.16, identify the minimum-energy broad-
cast tree with the base station as the root. Assuming that the grid consists of 
unit squares, and K = 1, compute the energy spent by all the nodes in completing 
the broadcast.

u v

w x

x u v u w

v w x w u

w v u v x

u x w x v

FIGURE 20.15 Four sensor nodes in a topology control exercise.
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FIGURE 20.16 Identify the minimum-energy broadcast tree with the initiator as the root.
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20.10  Consider a simple averaging method for time synchronization in a wireless sensor 
network. Assume that in each sensor node, the clock is counterdriven by a 1 MHz 
clock (accuracy 1 in 104). Every 10 s, each node executes the following steps:
a. Locally broadcasts its own clock
b. Receives the broadcasts from its neighbors
c. Computes the average, discards the outliers, and resets its own clock
Assuming that the signal propagation delay is negligibly small and ignoring  message 
collision, estimate the expected accuracy of clock synchronization.

Programming Exercises

If you have a laboratory with working sensor nodes, then implement your solutions to the 
following exercises. Otherwise, obtain a simulator that provides an authentic simulation 
of sensor networks, and complete the exercises in the simulated environment. One such 
simulator is TOSSIM. Here are some references that may be relevant:
 1. http://webs.cs.berkeley.edu/tos/ contains a tutorial on TinyOS.
 2. http://www.tinyos.net/tinyos-1.x/doc/tython/manual.html describes Tython: a 

Python-based scripting extension to TinyOS’s TOSSIM simulator.

You will need a few days to get ready with the required tools.
20.11 Multicasting on a Sensor Network

Implement multicasting on an 8 × 8 grid of sensor nodes using the gossip protocol. 
Here is a description of a simple version of gossip(p):

A source sends the message to each neighbor with probability p. When a node 
first receives the message, with probability p it forwards the message to each 
neighbor. All duplicate requests are discarded.

Implement the protocol for various values of p. Draw a graph showing how long it 
took for all the nodes to receive the message as a function of p. Simulate the protocol 
on a large grid and study how many messages it took to complete the broadcast.

20.12 Localization Using Sensor Networks
The radio chips on the sensor nodes provide an RSSI value with each received mes-
sage. Using RSSI, determine the location of a given node within a floor/laboratory. 
Assume that a set of fixed sensor nodes is mounted in accessible locations, and these 
send out beacons at regular intervals. RSSI-based measurements generally do not 
exhibit good accuracy—nevertheless, compare the accuracy of your measurement 
with the actual location of the node.
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C h a p t e r  21

Social and Peer-to-Peer 
Networks

21.1 INTRODUCTION TO SOCIAL NETWORKS
A social network depicts a social structure. It is commonly represented by a graph where 
the nodes are entities, and edges denote a relationship between a pair of entities. Some 
examples of entities are persons, organizations, various forms of living beings, web pages, 
cities, and airports. When nodes represent people, an edge may denote a friendship relation 
between them. When nodes are web pages, an edge from page x to page y may represent the 
existence of a link from the former to the latter page. When nodes denote businesses, an 
edge may denote the existence of a business relationship between two businesses. A social 
network like Facebook® or Twitter® is a modern Internet-based platform to create a social 
structure, and these have become extremely popular for communication and content shar-
ing. But social networks existed from the dawn of civilization. Beyond human society, 
social network–like structures have been observed in many complex networks present in 
nature, pointing to the existence of a science.

The mechanism behind the evolution of social structures has intrigued people for nearly a 
century. Measurements conducted in various social networks have generated a large volume 
of data, leading to important and sometimes surprising results. The theory of social networks 
has evolved from such measurements, with the analysis of graphs as the primary tool.

21.1.1 Milgram’s Experiment

Historically, Milgram’s experiment [M67] triggered interest in the discovery of how 
 connected social beings are. A measure of the connectedness between two randomly 
 chosen individuals is the length of the shortest chain of acquaintances between them, often 
referred to as the distance or the degree of separation between them. As an example, con-
sider Figure 21.1, where each node represents a person and an edge denotes that the nodes 
at the two endpoints are friends. Thus, the distance between B and H is 4, and the distance 
between E and C is 1.
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Milgram arranged to send 160 envelopes to a group of randomly selected people from 
Wichita, Kansas, and Omaha, Nebraska and asked them to deliver the envelopes to a spe-
cific target person. Each envelope contained the following:

 1. A document with the logo of Harvard (Milgram’s home institution) on it.

 2. The name, address, and occupation (stockbroker) of a friend of Milgram living in 
Boston, MA. This person is the intended recipient of all  the envelopes.

 3. Instructions to get the package to the target person following specific rules where 
each person could only send the package to an acquaintance. An acquaintance was 
defined as being on first-name basis.

The initiator will send the letter to an appropriate acquaintance who will forward it to 
the next one, until the letter reaches the target person. Milgram had a pressing concern 
about whether any one of these letters would reach the target. However, after a couple of 
modifications in the rules of package delivery, 42 of the 160 letters made it to the target 
person via up to a dozen intermediate persons. The median value of the number of inter-
mediaries was 5.5, and the mean was 5.9, which can be rounded off to 6 leading to the 
famous term six degrees of separation.

Milgram’s experiment had several limitations. Consider the following:

 1. How did it account for the letters that did not reach the target person? Mathematically, 
we should consider the number of intermediaries to be infinite, but considering the 
imperfect nature of human beings, they were ignored.

 2. The sample size was small—it was done on a small fraction of the residents of the 
United States only. All packages were sent to only one target person in one city, and 
these originated only from two cities.
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FIGURE 21.1 (a) A friendship graph with 10 persons: the distance between A and H is 4. (b) Another 
friendship graph with 5 nodes and (c) the distances between the different pairs of persons for the 
friendship group of (b).
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It would be fair to question if these results can be generalized to a population of much 
larger size. Interestingly, recent experiments conducted on much larger sample sizes vin-
dicated the myth of six degrees of separation. For example, a 2007 study done by Karl 
Bunyan on the Facebook platform with 5.8 million users showed that the average distance 
separating two participants of the application is 5.73 with the maximum distance being 
only 12.

These results are significant. It shows that human society is tightly knit, and there exists 
a way for any person to reach any other person in the planet via a short chain of acquain-
tances. Interestingly, small degrees of separation have been discovered in many other cases 
too. In the following, we present some significant ones:

World Wide Web: The web can be represented by a directed graph for which each node 
represents a web page, and an edge (i, j) indicates that there exists at least one pointer 
from page i to j. In 1998, when the number of web pages was estimated to be 800 million, 
Barabasi’s experiment led to the conclusion that the average separation between any two 
web pages on the web is 19.

Film actor network: A film actor network is an undirected graph in which the nodes are 
actors, and an edge between a pair of nodes indicates that the two actors acted together in 
at least one film. Using the Internet Movie Database (IMDb) with a population of 225,226 
actors, it was found that the mean distance between a pair of actors was only 3.65, and the 
average degree per node is 61. The most connected actors were the hubs of the graph, with 
Rod Steiger having the smallest distance of 2.53 from everyone else, Charlton Heston has a 
slightly longer distance of 2.57, and Kevin Bacon’s distance is 2.79.

Electrical power grid: The electrical power grid of Western United States has been studied 
as a social network, with the nodes as the generating stations and the edges as high-
voltage links connecting pairs of generating stations. This network has 4941 nodes, with 
an average distance of only 18.7 between pairs of generating stations and an average 
degree of 2.67 per node.

Caenorhabditis elegans: C. elegans is a simple worm of length 1.2 mm and lives in soil. It is 
one of the simplest organisms with a nervous system. Its nervous system consists of only 
302 neurons, and the connections among these neurons have been completely mapped by 
biologists, with the nodes being the neurons and the edges being synapses connecting a 
pair of neurons.

21.2 METRICS OF SOCIAL NETWORKS
Many different metrics have been introduced to study the structural properties of a social 
network. This section describes some of these metrics.

21.2.1 Clustering Coefficient

Consider the edges of a friendship network, where each node is a person and each undi-
rected edge between a pair of nodes i and j denotes the fact that i and j are friends with each 
other. For any given node i of this graph, the clustering coefficient measures what fraction 
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of the various pairs of friends of node i are friends with each other. This is also the prob-
ability that two randomly chosen friends of a given node i are friends with each other. In 
Figure 21.1, consider B, who has four friends {A, C, D, E} from which six pairs can be con-
structed. Of these, (A, D) are friends with each other and so are (D, E) and (E, C). So, the 
clustering coefficient of B is 3/6 = 1/2. Note that the value of clustering coefficient always 
ranges between 0 and 1. For a tree topology, the clustering coefficient of every node is 0, 
whereas for a clique, the clustering coefficient of every node is 1. The clustering coefficient 
values of the nodes of a graph intuitively reflect how close-knit the community is.

21.2.2 Diameter

Let d(i, j) denote the distance of the shortest path between a pair of nodes i and j. It is 
also known as the geodesic distance. For all such pair of nodes, the largest value of d(i, j) 
is known as the diameter of a social network. Thus, it is the largest degree of separation 
between any pair of nodes.

21.3 MODELING SOCIAL NETWORKS
Given a number of isolated nodes representing actors, how does a social network evolve? 
There are several models about the formation of social networks. Erdös and Renyi pro-
posed one of the earliest models based on random graphs. Their model is known as the 
Erdös–Rényi model or the ER model.

21.3.1 Erdös–Rényi Model

The ER model starts with a set of n isolated nodes. Between each pair nodes, an edge is 
added with a probability p. This results in the ER graph G(n, p). It represents the forma-
tion of a social network as a random process. Note that the graph G(n, p) is different from 
another kind of random graph known as G(n, m), which is a graph that is randomly chosen 
from the set of all possible graphs with n nodes and m edges.

The connectivity of an ER graph G(n, p) undergoes interesting changes as the value 
of p  is increased. When p is much smaller than 1/n, the graph consists of a large num-
ber of disjoint components—each component is a tree or a cycle of size O(logn). As 
p reaches or exceeds 1/n, a giant component emerges—this is comparable to a phase 
change in systems that evolve in the nature. The size of the giant component is O(n2/3), 
whereas the smaller components still have a size O(logn). Finally, when p exceeds logn/n, 
G(n, p) is almost always connected.

Some of the useful properties of the ER graph G(n, p) are summarized in the following:

Property 1: The expected degree of a node in G(n, p) is (n − 1) · p. This immediately follows 
from the fact that a node chooses its neighbors from the pool of (n − 1) nodes with prob-
ability p.

Property 2: The expected number of edges of G(n, p) is (n(n − 1)/2) ⋅ p. This follows from 

the fact that there are 
n n n
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 = −( ) pairs of nodes, and an edge is established with a prob-

ability p.
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Property 3: The expected diameter of G(n, p) ≈ logkn, where k = (n − 1) ⋅ p, is the expected 
degree of a node. It can be justified as follows: Let x be the diameter. Start a BFS from any 
node, and the farthest ones must be at a distance ≤x. With degree k, the total number of 
nodes within distance x must be ≤ 1 + k + k2 + k3 + ⋯ + kx.

Therefore, 1 + k + k2 + k3 + ⋯ + kx ≤ n.
So, x ≤ logkn.

Property 4: The expected value of the clustering coefficient of G(n, p) is p.

Property 5: The number of nodes N(k) with degree k in G(n, p) follows a binomial distribution 
n

k
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 different ways of choosing k nodes from the 

set of (n − 1) nodes. A binomial distribution is represented by a bell curve, which is one of the 
signatures of a random graph.

The ER model of social networks held its ground for a long time but was later ques-
tioned. There are some networks like the US highway network that fits closely with the ran-
dom network model, but most others do not. One of the characteristics of human  society 
is living in clusters—so any model used to represent such a social structure must have a 
high clustering coefficient. However, the clustering coefficient of ER graphs is very small, 
although on the positive side, the diameter is small. The quest for a better model for such 
networks led Watts and Strogatz to propose the small-world model.

21.3.2 Small-World Model

In 1998, Watts and Strogatz reverse engineered Milgram’s observations and proposed a 
model of social networks. The starting point is a regular clustered graph— specifically, 
they started with a regular ring lattice of n nodes in which every node had a degree 
k(n ≫ k > lnn)* as shown in Figure 21.2a. This graph has a high clustering coefficient, but 
a high diameter too (≈n/2k). To minimize the diameter, they rewired the regular graph by 
replacing the neighbors of each node by randomly chosen neighbors with a very low prob-
ability p (Figure 21.2b). The regular links represented the local contacts and maintained 
the clustered structure, whereas the randomly picked neighbors represented the occasional 
long-range contacts. They demonstrated that when p ≃ 0.01, the resulting graph still has a 
fairly large clustering coefficient, but the diameter substantially decreases, almost match-
ing the diameter of random graphs. These satisfy the requirement of the social networks of 
human acquaintances. They called these small-world graphs.

Jon Kleinberg [K00] followed up with Watts and Strogatz’s small-world model and tried 
to separate the issues of the existence of short chains among random peers and the discov-
ery of such short paths during an actual search. He argued that although Watts–Strogatz’s 

* The condition k > ln n prevents the network from being partitioned.
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construction of small-world graphs only proves the existence part, no decentralized algo-
rithm is able to discover the short paths between arbitrary pairs of nodes. He suggested a 
modified construction of small-world graphs, which will facilitate the discovery of short 
paths between pairs of nodes. Kleinberg’s model suggests that the long-distance neighbors 
should not be chosen using uniform random probability, but with a skewed probability 
distribution where the probability of choosing a node as a long-range neighbor decreases 
with the distance of that node from the current node. He demonstrated that by carefully 
defining the probability of choosing the long-distance neighbors, it is possible to route a 
message to any other node in a very small number of hops, which explains the existence of 
short hops between pairs of nodes.

Kleinberg demonstrated his construction on a 2D lattice. His construction has two parts:

 1. Each node maintains local contacts with every node upto a lattice distance of p—this 
reflects the local clustering of the nodes.

 2. Each node randomly picks q long-range neighbors. Their addition involves a new 
parameter r: the probability of choosing a long-range neighbor at a lattice distance d 
is proportional to d−r.

Kleinberg showed that when r = 2, which is the dimension of the lattice, there exists an 
algorithm using which each node can route a message in only O(log2n) hops. The algo-
rithm requires that in each step, the current message holder send the message to a node 
that is as close to the target as possible.

21.3.3 Power-Law Graphs

While the small-world model is able to explain the presence of short path between pairs 
of nodes, many real-life social networks do not fit into this model. Unstructured P2P 

(a) (b)

FIGURE 21.2 Watts–Strogatz construction of a sample small-world graph: (a) A regular ring lat-
tice with n nodes, each of degree k. (b) Each node replaces an existing neighbor by a randomly 
chosen long-range neighbor (see the broken lines) with a very low probability p ≈ 0.1. The resulting 
graph has a low diameter but a high clustering coefficient, which are the characteristics of a large 
class of social networks.
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networks like Gnutella, US power grids, the WWW, and the US airport network all exhibit 
a power-law distribution of node degrees. In a power-law distribution, the number of nodes 
N(k) having degree k satisfies the condition N(k) = C · k−r, where C and r are constants. Such 
networks are also known as scale-free networks. For a rich class of systems that evolve in 
the nature, the condition 2 < r < 3 holds. Figure 21.3 compares the degree distributions of 
a random ER graph and a power-law graph.

Barabási and Albert [BA99] described a method for generating a subclass of graphs that 
satisfy the power-law distribution. Their method uses the concept of rich getting richer that 
is also known as preferential attachment. The guiding principle is that when nodes join 
an existing network, they are likely to connect to existing nodes that already have a high 
degree, because such nodes are considered more influential and are likely to provide bet-
ter connectivity to the rest of the network. More precisely, if δ(i) is the current degree of 
node i in the existing network, then the incoming node will connect to node i with a prob-
ability proportional to δ(i). This means that the high-degree nodes are expected to attract 
more neighbors than the low-degree nodes. We demonstrate here that this policy leads to 
the creation of a power-law network.

Consider the creation of a network as follows: At time t = 1, a single node appears from 
nowhere. Thereafter, at each time step, exactly one node is added to the existing network. 
Let G = (V, E) denote the topology of the graph. A new node j can connect with an existing 
network via m(m ≥ 1) edges. The probability that the new node j will connect to the existing 
node i via edge (j, i) is C · δ(i) where C is a constant (Figure 21.4). As a simple case, consider 
m = 1 (the resulting topology will be a tree). Since C i

i V
⋅ =

∈∑ δ( ) 1 , δ( )i V
i V

=
∈∑ 2 , and 

at time t, |V| = t, it follows that C = 1/2t.
At time step t, let the number of nodes with degree k be n(k, t). At time step (t + 1), 

a new node will join, which will modify the number of nodes with degree k. To compute 
n(k, t + 1), observe the following:

 1. If the incoming node connects to an existing node with degree (k − 1), then its degree 
will increase to k. The probability of this event is (k−1)/2t.

 2. If there is an existing node with degree k but the incoming node does not connect with 
it, then its degree remains unchanged at k. The probability of this event is 1−(k/2t).

 3. There is no other event that can influence the value of n(k, t + 1).
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FIGURE 21.3 Degree distributions in (a) ER graph and (b) power-law graph.
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This revision of the degrees is reflected in the following equation:
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Let f(k,t) = n(k,t)/|V| denote the fraction of the total nodes with degree k at time t. Since 
one node is being added at every time step, |V| = t at time step t, and |V| = t + 1 at time step 
(t + 1). Therefore, from (21.1),
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However, as t → ∞, f(k,t + 1) → f (k,t), and we designate it by f(k). Accordingly, it follows 
from (21.2) that after a very long time,
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FIGURE 21.4 The evolution of power-law distribution via the rich gets richer model: the probability 
of the new node connecting to one of the existing nodes is proportional to the degree of that node.
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To compute f(1), consider (21.1) for the case k = 1. Notice that there is currently no node with 
k = 0 except the one that is being added. After the addition, its degree will change to 1. So,
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This leads to f(1) = 2/3, and (21.3) can be rewritten as f(k) = 4/k(k + 1)(k + 2). Therefore, after 
a long period of addition of nodes, the network will stabilize to a topology for which the 
fraction of its node with degree k will be of the order of 1/k3, and power-law distribution 
will hold.

In power-law networks, short paths exist between arbitrary pairs of nodes—it becomes 
feasible due to the presence of the hubs. Consider the US airport network again, which 
is a power-law network. In traveling from one airport to another via a shortest path, in 
how many occasions do we need to change plane more than two to three times? Another 
important property of such networks is that they can tolerate the failure of random nodes 
very well. Only targeted attacks on major hubs have the potential to cripple the network.

While these models help understand the structures of a large class of social networks, 
the evolution of social structures may have many other mechanisms. One such mechanism 
is to selectively adopt the neighbor of a neighbor as a neighbor forming triadic closures. 
Another mechanism is to establish connections beyond local neighbors—this is possible 
when actors meet based on common hobbies or travel in common transports like a bus or 
a train or in a carpool. Both of these are mechanisms for growth in current Internet-based 
social networks like Facebook, Twitter, or LinkedIn.

21.4 CENTRALITY MEASURES IN SOCIAL NETWORKS
Centrality is a measure of the importance of a node (or an edge) in a social network. There 
are different aspects of centrality based on how you assess the importance. We present here 
three forms of centrality measures.

21.4.1 Degree Centrality

The more neighbors a given node has, the greater is its influence. In human society, a 
person with a large number of acquaintances is believed to be in a favorable position with 
more opportunities. This leads to the idea of degree centrality, which refers to the degree of 
a given node in the graph representing a social network. In Figure 21.1a, the degree central-
ity of node E is 5 and that of G, H, I, and J are 3 each.

21.4.2 Closeness Centrality

The power or influence of a node can also come from its ability to act as a reference point 
and by being a center of attention so that its influence is felt by a large number of nodes. 
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Nodes that are able to reach other nodes via shorter paths, or that are more reachable by 
other nodes via shorter paths, are in more favored positions. This structural advantage can 
be translated into power, and it leads to the notion of closeness centrality. Consider the net-
work in Figure 21.1b, for which the table in Figure 21.1c lists the distances between the vari-
ous pairs of nodes. Let V denote the set of nodes, and for ∀i, j ∈ V, d(i, j) represent the 
distance between i and j. A yardstick of the closeness of a node i from the other nodes is 

d i j
j V

( , ).
∈∑  The smaller it is, the closer is node i to the other nodes. Closeness central-

ity is sometimes expressed as a normalized value (ranging between 0 and 1) with respect 
to the node that is the closest of all. In Figure 21.1b, it is node B and d B j

j V
( , ) =

∈∑ 4 , 
and its closeness centrality is 1. For node E, d E j

j V
( , ) =

∈∑ 5 , so its closeness centrality is 
4/5 = 0.8. Similarly, for node A, d A j

j V
( , ) =

∈∑ 6 , so its closeness centrality is 4/6 = 0.66.

21.4.3 Betweenness Centrality

Communication between nonneighboring nodes is channeled through intermediaries. For 
each pair of nodes in a social network, consider one of the shortest paths—all nodes in this 
path are intermediaries. The node that falls in the shortest paths between the maximum 
number of such communications is a special node—it is a potential deal maker and is in a 
special position since most other nodes have to channel their communications through it. 
This leads to the notion of betweenness centrality.

To estimate the betweenness centrality of a node k, let V denote the set of nodes, N(i, j) 
be the number of shortest paths between a pair of nodes i, j ∈ V, and Nk(i, j) be the number 
of such shortest paths that include the node k. The fraction Nk(i, j)/N(i, j) is a normalized 
measure of the betweenness centrality of node k with respect to the pair of nodes i, j.

Consider Figure 21.5. The shortest paths between the nodes A and G are ACEG and ABFG. 
Therefore, the betweenness centrality of node C with respect to (A, G) is 0.5. The overall 
betweenness centrality of a node is considered over all possible pairs of nodes in the network. 
Here, none of the shortest paths among pairs of nodes in {B, D, E, G, H} includes node C, 
but one of the two shortest paths between node {A, D} and {A, G} and the only shortest path 
between {A, E} include node C. Assume that each source node pushes 1 unit of flow to a 
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FIGURE 21.5 Example of betweenness centrality.
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destination node via shortest paths. In the presence of multiple shortest paths the flow is evenly 
split, as node C will route (1 + 0.5 + 0.5), that is, 2 units of flow. The nodes that handle the larg-
est volume of flow have the highest betweenness centrality in the graph. The largest volume of 
flow can be used to normalize the betweenness centrality of the other nodes in the network.

Betweenness centrality not only applies to nodes but also applies to edges. For a given 
edge, it is defined in a similar way by counting how many shortest paths between various 
pair of nodes include that edge and what fraction of the overall flows between pairs of 
nodes is routed through that edge.

The computation of betweenness centrality involves examining the shortest paths 
between every pair of node. There exist deterministic algorithms for community detection 
with time complexity of O(m ⋅ d ⋅ logn) where n is the number of nodes, m is the number of 
edges, and d is the depth of the dendrogram* [CNM04].

21.5 COMMUNITY DETECTION
Relations among entities within a social network usually have a significant amount of 
heterogeneity. In many such networks, there is a higher concentration of edges between 
a  fraction of the nodes that represent a community structure and a relatively lower 
 concentration of edges between nodes belonging to different communities. The goal of 
community detection is to analyze the graphs representing social networks and identify 
such communities. Note that communities can also be divided into subcommunities—so 
 digging into this hierarchy will end up in finer classifications. For example, within a social 
network, the clients of a particular national store chain may form a community, and within 
such a community, the senior citizens may form a subcommunity that is different from the 
subcommunity formed by teenagers. In a given academic community, both biologists and 
computer scientists are engaged in doing research and publishing research papers. Some 
of these papers will be authored by only biologists, some will be authored by only com-
puter scientists, and perhaps only a smaller number of papers will have both biologists and 
computer scientists as coauthors. Given an unlabeled coauthorship graph, a community 
detection algorithm should be able to identify the existence of two distinct communities.

21.5.1 Girvan–Newman Algorithm

In 2002, Girvan and Newman [GN02] proposed an algorithm for community detection in 
social networks. Given a graph G representing a social network, it identifies the edges con-
necting distinct communities and removes them in an iterative manner, until the commu-
nities were isolated. The edges connecting distinct communities are detected by measuring 
their betweenness centrality. An outline of the algorithm follows:

{Girvan–Newman algorithm for community detection: the first step}
do G is a single connected component →
 Detect the edge(s) of highest betweenness centrality and
 remove those edges
od

* A dendrogram is a tree representing a hierarchical clustered structure.
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To detect the nested structure of the communities, the algorithm must run on each parti-
tion until all edges are removed. The tree structure showing the communities and the sub-
communities in a social network is a dendrogram with the individual nodes at the leaves.

Since the time complexity of computing the betweenness centrality is substantial, it 
may be tempting to avoid recalculation of the betweenness centrality of the remaining 
edges after an edge is removed, but this will lead to serious error since the flows within the 
graph adjust to the new topology. As an example, consider the graph in Figure 21.6. The 
edge (4, 5) has the highest betweenness centrality of 5 × 5 = 25, since every shortest path 
from any of the nodes {0, 1, 2, 3, 4} to any other node in {5, 6, 7, 8, 9} must pass through 
that edge. In contrast, the betweenness centrality of the edge (2, 3) is only 4, since one-third 
of the shortest paths from anyone of {4, 5, 6, 7, 8, 9} to 2 will pass through the edge (2, 3), 
half of the shortest paths from any in {0, 1} to node 3 will pass through the edge (2, 3), and 
the shortest path from node 3 to 2 will pass through (2, 3).* This also applies to the edge 
(5, 8). Similar calculations will reveal that the betweenness centrality of the edge (3, 4) is 
8.33. After the edge (4, 5) is removed, the graph is partitioned and the partitions expose the 
community structures. Note that the betweenness centralities of the edges (2, 3) and (3, 4) 
have changed after the removal of the edge (4, 5). The algorithm has a high time complex-
ity—it runs in O(n3) time on sparse graphs of size n = |V|, so is clearly not scalable.

A more recent algorithm by Raghavan et al. [RAK07] solves the problem in O E( ) time, 
where E denotes the set of edges. It uses the concept of label propagation. The basic idea is as 
follows: Initially, each node is assigned a unique label. Thereafter, at every step, each node 
acquires the label that the majority of its neighbors currently have. Eventually, densely con-
nected groups of nodes form a consensus on a unique label, and nodes with identical labels 
identify a community.

21.6 INTRODUCTION TO PEER-TO-PEER NETWORKS
P2P networking is a paradigm where a set of user machines at the edge of the Internet 
communicates with one another to share resources without the help of any central author-
ity. Geographical boundaries become irrelevant, and the absence of any central authority 
promises spontaneous growth, as well as freedom from censorship. Peers include friends, 

* We avoid double counting caused by the swapping of the source and the destination nodes of each route.
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FIGURE 21.6 Illustration of a step of Girvan–Newman algorithm: the removal of the edge (4, 5) of 
highest betweenness splits the network into two partitions.
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collaborators, and competitors, and the resource sharing has to be implemented through 
decentralized protocols. Scalability is an integral part of this concept—no P2P system is 
worth looking at unless it scales to millions of machines around the globe.

As an illustration, consider that you have several hundred movies in the digital format, 
but not enough storage space in your computer to hold all of them. Some of your friends 
might have surplus storage space in their computers, so they volunteer to help you with 
storing some of your movies at their space. When these friends acquire new movies, they 
also do the same thing, that is, use the storage space of their friends. In this way, a digital 
library of movies is formed, which is distributed over a geographic region. Now, when you 
want to access the movie Life of Pi, you would like to know where it is located. For this, you 
apply a lookup function on the name of the movie (or use some other tool to map names 
into locations), and the result gives you the location of the movie. You arrange to send 
a request to that location through the shortest possible path and start downloading the 
movie. The social networking giant Facebook uses P2P storage to build their Cassandra 
file system that handles their Inbox search problem, the physical storage being scattered 
around thousands of data centers around the globe.

P2P is one of the technologies that started with music sharing over the Internet and was 
pioneered by Napster. A Napster client could download any MP3 music from another client 
who has a copy of it. There could be multiple copies of the same song at different sites, and 
a client could download the desired music from a next-door neighbor or from another host 
halfway round the globe. After attaining significant popularity, Napster was closed by the 
government for copyright infringement.

Regardless of these legal ramifications or ethical issues, P2P has led users to a new form 
of freedom in collaborative resource sharing. For example, hundreds of small laborato-
ries in the world generating genomic data about newly discovered proteins now share one 
another’s discoveries using P2P technology. Facebook and Twitter started using BitTorrent 
technology for content distribution. This chapter presents the underlying principles behind 
the various kinds of P2P networks.

21.7 FIRST-GENERATION P2P SYSTEMS
21.7.1 Napster

All P2P networks are overlay networks. An overlay network is built on top of an existing 
network, where the set of nodes is a subset of the set of nodes of the original network, and 
the edges correspond to paths between distinct nodes. Each node has an IP address, and 
each edge can be traversed by one or more hops on the underlying IP network.

Current P2P systems are broadly classified into three different categories: centralized, 
unstructured, and structured. The centralized architecture followed by Napster does not 
strictly fit the profile of P2P systems since it used a central index server. However, Napster 
has historic significance. Another early P2P system is Gnutella, which belongs to the 
unstructured category: objects are located by flooding the queries. This section provides a 
brief outline of these two well-known first-generation P2P systems. We will use the terms 
songs and files interchangeably.



478   ◾   Distributed Systems: An Algorithmic Approach

The old Napster had a centralized directory containing the indices of multiple files of 
MP3 music stored at its clients’ machines. Each Napster client registers with the Napster 
service and exports the names of the MP3 songs that reside locally on that host. Note that 
Napster only stores the indices of the files but not the actual files. The directory may con-
tain the indices of multiple files with the same name. The server keeps track of all clients 
currently connected to it. To locate a song, the user logs in and enters the title of the music 
or name of the singer, which prompts the Napster utility to query the index server. If a 
match is found, then a list of all matches is sent back to the client. The client can ping one 
or more of these sites to estimate the download speed and then directly download the song 
from one of these sites.

The new Napster is fully legal, and the company has changed its business model that 
includes subscription service, as well as selling individual MP3 tracks and albums.

21.7.2 Gnutella

Gnutella started after the demise of the old Napster, and it used a fully distributed alterna-
tive architecture. Unlike the old Napster, there is no central server that holds the indices of 
all the songs that are available on the network of Gnutella clients.* Instead, these reside in 
the clients’ machines. A new client must know the IP address of at least one other Gnutella 
client. To facilitate the bootstrap operation, each client receives a list of the addresses of 
working nodes. When a client P connects to an existing client Q, Q sends P its list of its 
current neighbors. P will now try to connect not only to some of its own list of nodes but 
also to one or more nodes from the list of nodes that it received from Q.

Once connections are established, queries for objects are propagated down the network. 
The early search protocols used flooding—each client checks if the desired file is locally 
available—if so, then the index and the IP address are made available to the originator of 
the query. Otherwise, the query is forwarded to all other clients that it knows of. To guar-
antee termination, each query is assigned a TTL, which reflects the maximum number of 
levels that the query is allowed to propagate. Once this limit expires, the query is discarded. 
The Gnutella protocol uses the following five descriptors:

Ping: Discovers hosts on the network by asking: Are you there?

Pong: This is the response to a ping, and it includes its IP address of the responder and the 
amount of data that it wants to share.

Query: The primary mechanism for searching an object: I am looking for XYZ (the message 
is forwarded until XYZ is located or the search is abandoned).

QueryHit: It is the response to a query in case a host has that object in its local store. The 
descriptor with the IP address, port number, etc., required to download XYZ is propagated 
to the client via the return path.

Get/Push: Initiate download. If the source is firewall protected, then the source gets a 
request to push the object to the client.

* Since every client is also a server, Gnutella calls them servent (server + client).
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One concern about the old Napster as well as the original Gnutella is their scalability. 
For Gnutella, the flooding of the queries hogs network bandwidth. Even though the old 
Gnutella kept some users happy at the scale at which it was operating, it certainly took 
away useful bandwidth from other useful applications. Search traffic was taking a quarter 
of the net bandwidth and users had limited visibility of what they could find.

As far as the old Napster was concerned, the centralized index server could have been 
a possible bottleneck. But apparently, there was not much complaint about it since servers 
were replicated. The claim was that there were 1.5 million simultaneous users at its peak, 
and this demand was adequately handled via replication. To feel the pinch, Napster would 
have had to cater to a much larger clientele, perhaps is debatable considering, but this is 
how efficiently Google or Yahoo now provides service. Before these issues could be exam-
ined, the government shut down the old Napster.

Another issue in P2P networks is their resistance to attacks and censorship. Did the old 
Napster and Gnutella live up to that promise? Clearly, the old Napster did not! Once the 
server sites were blocked, Napster became crippled. In contrast, Gnutella is a truly distrib-
uted architecture—so blocking a small number of sites was not much of a disruption. To 
disrupt Gnutella, one of the following two approaches* appears feasible:

 1. Flood the network with bogus queries. This is not quite a DoS attack (as there is no 
central server), but it can significantly slow down the sharing process and discourage 
the clients.

 2. Store bogus files or spams at many sites through malicious clients. The spam will 
frustrate and possibly discourage the users from sharing.

21.8 SECOND-GENERATION P2P SYSTEMS
The lessons from old Napster and Gnutella led to the design of new breeds of P2P systems 
that tried to overcome many of the limitations of the first-generation systems. There are 
numerous candidates among the second-generation P2P systems. Prominent among them 
are KaZaA, Chord, content-addressable network (CAN), Kademlia, Pastry, Tapestry, and 
BitTorrent. Each of these systems addresses four primary issues central to P2P file sharing:

File placement: Where to publish the file to be shared by others?

File lookup and download: Given a named item, how to find or download it? How fast can 
it be downloaded? Such downloads can be from the original server or from a proxy server 
holding a cached copy.

Scalability: How is the performance affected when the network scales to millions of nodes? 
No P2P network is worth looking at unless performance guarantees are provided at large 
scales.

Self-organization: How does the network handle the join-and-leave operation of the cli-
ents? The existing members should be made aware of the presence of the new nodes and 

* We do not recommend any of these on an actual system!
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the departure of those who left the system. Also, the new members must eventually know 
about the existing members.

Additionally, some of the popular systems address a few secondary issues that make them 
attractive to users. These are discussed in the following:

Censorship resistance: How does the network continue to offer its services in spite of poten-
tial authoritarian measures that can shut down a fraction of the nodes? Such measures are 
common in the face of differences in political or ideological views. One view of censor-
ship resistance is that even if a substantial fraction of the nodes is blocked, almost all the 
remaining nodes should still be able to access almost all the original data items.

Anonymity: How to keep the name of the owner of an object or the location of its publica-
tion secret?

Fault tolerance: How to prevent significant performance degradation in spite of node failures?

Free-rider elimination: A fraction of peers always uses resources (by downloading stuff from 
others) but never contributes to the resources (uploading objects so that others can use). This 
is ethically unfair. How can free riding be eliminated or at least free riders be discouraged?

Many of these issues are related. For the lookup problem, a central table as used in 
Napster is not acceptable primarily from fault tolerance. A similar lookup is routinely done 
by the DNS on the Internet. DNS has a hierarchical structure. The shutdown of a reason-
able fraction of nodes sufficiently high up in the hierarchy of DNS can be catastrophic.

Gia—an attempt to improve Gnutella’s performance: The Gia network by Chawathe et al. 
[CRB+03] is an improvement over Gnutella in as much as it addresses the scalability prob-
lem. Four proposals form the cornerstone of the improvement:

 1. Gia replaces the flooding of Gnutella by random walk. One or more random walk-
ers can be engaged to locate the desired object. This lowers network congestion and 
expedites object location.

 2. Gia keeps track of the heterogeneity of the network by identifying which nodes have 
higher capacity and bandwidth. Such nodes can handle a larger number of queries. 
The principle of one-hop replication enables each node to maintain an index of the 
content of its neighbors. Accordingly, high-degree nodes are likely to hold more clues 
about the object being searched in their immediate neighborhood.

 3. A dynamic topology adaptation protocol converts the high-capacity nodes into high-
degree nodes by encouraging them to adopt other nodes as neighbors. This helps 
guide the search in a meaningful way—a biased version of random walk, where the 
probability of directing a search to a node of degree δ is proportional to δ, helps the 
queries gravitate toward high-degree nodes and improves the efficiency of the search.

 4. Gia uses flow control tokens that are predistributed according to the capacities of the 
nodes. Queries are not dropped but pushed to a node only when it is ready to accept 
and handle it.
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The topology of Gnutella (or Gia) depends on when and where the peers joined the 
network and does not strictly conform to predefined specifications. These are exam-
ples of unstructured networks. In contrast, a class of P2P networks requires the peers 
to store or publish objects following specific guidelines and maintain their neighbor-
hood in a predefined manner. Such networks provide uniform guarantees regarding 
search latency and load balancing. These are called structured P2P networks and are 
based on DHTs.

21.8.1 KaZaA

In 2001, the Dutch company Consumer Empowerment introduced KaZaA following the 
demise of Napster. KaZaA improves upon the performance of Napster by using FastTrack 
technology. A fraction of the client nodes that have powerful processors, fast network con-
nections, and more storage space are used as supernodes. The supernodes are spontane-
ously designated, and they serve as temporary indexing servers for the slower clients. Since 
the indexing service is no more centralized, KaZaA has much improved scalability and 
fault resilience. A KaZaA client stores the IP address of a set of supernodes and picks one 
of these supernodes as its upstream and uploads to it the indices of a list of files it intends 
to share (with other peers). All search requests are directed to this supernode, which com-
municates with other supernodes to locate the desired file. After the file is located, the 
client directly downloads it from the peer. While the indexing servers retain the flavor of 
Napster, the supernode–supernode communication used for forwarding queries is remi-
niscent of Gnutella. KaZaA allows download from multiple sources and uses a lightweight 
hash algorithm to checksum large files.

21.8.2 Chord

Searching files or objects in unstructured networks like Gnutella, in a way, amounts to 
groping in the dark. Before initiating the search, the initiator of a query has no clue about 
where the file might be located or if the file is at all present. This results in poor utilization 
of the network bandwidth. Structured P2P networks use a hashing function to precisely 
map objects to machines. This mapping function is used to publish and locate the object. 
Accordingly, given the name of an object, every peer knows where it is available. As an 
example, consider an m-cube. Assume that objects are stored into various machines located 
at the n = 2m  corners of the cube, and given an object, the identity of the machine storing 
that object can be looked up using a hashing function. This is the essence of DHT. To access 
any object from a remote machine, the user will forward the query along the edges of the 
m-cube. The propagation of both queries and replies will take up to m = log2n hops. To 
make it possible, each machine will store the address of only m = log2n neighbors.

The earlier principle is the main idea behind Chord designed by Ian Stoica and his col-
leagues [SML+02]. Each node in Chord maintains the IP addresses of a small number of 
other nodes, called its neighbors or fingers. The physical adjacency of neighbors is not rel-
evant. A set of peers anywhere in the globe can form an overlay network, as long as their 
routing tables clearly indicate how to reach one node from another either directly or via 
other peers. Routing data from one peer to its neighbor is counted as one hop. Both node 
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identifiers and object names are mapped into the same key space 0.. n − 1, and the name-to-
key conversion is done using a consistent hashing function like SHA-1. Conceptually, Chord 
maps the keys on the periphery of a circle, which defines the key space. Unless otherwise 
mentioned, we will assume that the keys are mapped in the ascending order along the clock-
wise direction of the circle (Figure 21.7). There may not be a physical machine for every key 
position. An object with a key K is mapped to the machine with key successor(K)—where 
successor(K) is the first node in the clockwise direction with key ≥K that corresponds to an 
existing machine in the network. Consistent hashing [KLL+97] helps with load balancing 
across different machines so that (1) every node stores roughly the same number of objects 
with a high probability, and (2) when a new node joins or leaves the network, only O(1/n) 
fraction of the keys are shuffled across machines.

Routing: Each node has a routing table (called a finger table) with m = log2 n entries. Each 
entry is called a finger that points to a neighbor—the rth finger of the node with key K 
points to the node with key successor(K + 2r−1 mod n). Figure 21.7 illustrates a Chord net-
work with keys 0–63. For the machine with key 8, its first two fingers will point to the 
machine with key 12, since no physical machine maps to the keys 9, 10 or 11. If the first 
finger of node i points to node j, then node j is the successor of node i, and node i is the 
predecessor of node j.

Lookup: To look up an object, first generate its key K by hashing the object name. 
Now follow a greedy search policy by taking the first hop using a finger that will lead 
to a machine with a key closest to (but not exceeding) K. Repeat this step to route the 
query until you reach the machine containing the desired object. With high probability, 
each hop reduces the distance by at least half, so it takes O(logn) hops to complete the 
lookup.
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FIGURE 21.7 Node with key 8 queries for an object hosted by a node with key 51. No real machine 
maps to the keys 9 and 10 represented by blank circles.
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Join and leave: Every P2P network is dynamic—from time to time, a fraction of the exist-
ing nodes leave the network and new nodes join the network. The object placement rule 
may be violated when an existing node leaves the network or a new node joins the network. 
Accordingly, the leave and join protocols must restore the invariants by appropriately 
modifying the fingers and moving the objects across the nodes. A consistent configuration 
of the Chord ring satisfies the following two invariants:

 1. For each node v, the successor and predecessor pointers are correct and satisfy the 
condition predecessor(successor(v)) = v. The predecessor pointer helps check the integ-
rity of the current topology.

 2. Each object with a key K is stored in successor(K).

We first illustrate the handling of the leave operation first. In Figure 21.7, assume that the 
machine with key 50 plans to leave the network. For this, it has to offload the object(s) held 
by it to another machine. After these objects are relocated to the machine with key 51, all 
 fingers pointing to the machine with key 50 should be updated and redirected to the 
machine with key 51. This concludes the leave operation.

For the join operation, each new node v will first contact an existing node v′. Node v′ 
will help the new node find its place in the Chord ring. The following three steps are needed 
to restore consistency:

 1. Node v′ will help node v find its successor node and initialize its finger table.

 2. Node v will be added to the finger tables of the appropriate existing nodes.

 3. Any object with key K such that successor(K) = v will be relocated to node v from its 
current holder.

The time complexity of a join or leave operation is O(log2 n). The join and the leave pro-
tocols of Chord are designed to handle one such event at a time. However, in practice, 
the churn rate can be quite high, and the routing tables can become inconsistent when 
multiple nodes concurrently join or leave. A stabilization protocol therefore periodically 
runs at the background and restores consistency. The essence of the stabilization protocol 
is for each node v to check if the invariant predecessor(successor(v)) = v holds. If it does not 
hold, then stabilization protocol will modify some of the pointers and enforce this invari-
ant. As an example, let node v join the system, and assume that its id falls between two 
nodes v1 and v2 (i.e., v1 < v < v2). Clearly, node v sets its successor to node v2, while the 
predecessor of node v2 is still node v1. When the stabilization protocol runs, node v finds 
out predecessor(successor(v)) = v1. So, node v sets its predecessor pointer to v1, contacts v1, 
and asks it to set its successor pointer to v. Packets that are in transit while the network is 
not stable may temporarily reach a wrong host. However, using the stabilization protocol, 
each node restores its routing table. As a result, the subsequent hops will eventually lead 
the packet to the correct machine.
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Finally, nodes can occasionally crash instead of voluntarily leaving the system. This 
causes objects with no backup to be permanently lost to the rest of the peers. To deal 
with failure of a node, each machine keeps track of the IP addresses of the next r = 2 log n 
nodes in the key space and replicates its objects in these nodes. If the probability of failure 
is ≤50%, then with high probability, at least one of the replicas will survive and become 
available to the users.

21.8.3 Content-Addressable Network

CAN is a structured P2P network developed by Ratnasamy et al. [RFH+01]. Unlike Chord 
that uses a ring of keys to implement the DHT abstraction, CAN uses a d-dimensional 
Cartesian coordinate space for the same purpose. For illustrating the basic architecture, we 
will assume that d = 2. Objects are hashed into points in a 2D torus [0, 1] × [0, 1] as shown 
in Figure 21.8. Each subspace of this 2D space is assigned to a physical machine, and this 
machine hosts all the objects stored in its space. Initially, there is only one machine A that 
will store all the objects. Later, when machine B joins the network, it contacts an existing 
machine (in this case, it is A), which splits its own area into two halves and allocates one of 
the two halves to B. All objects whose keys belong to the zone allocated to B will be trans-
ferred to B from A, and the two machines become neighbors in the P2P network. Each join 
is handled in the same way—an existing machine splits its own area into two halves and 
gives one of them to the new machine. When a node leaves, its zone is taken over by one of 
its neighbors. Sometimes, this leads to the creation of one larger zone. After a join or a leave 
operation, the routing tables are appropriately updated. Nodes can also crash from time to 
time, creating dead zones and causing fragmentation in the coordinate space. A node reas-
signment algorithm running in the background merges some of the fragments into a valid 
zone and assigns it to a nonfaulty node.
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FIGURE 21.8 Three stages in CAN: The square boxes are objects. In (a), machine B joins the net-
work and takes over three objects from machine A. In (b), machine C joins the network. In (c), two 
more nodes, E and D, join the network. The corresponding interconnection networks are shown in 
the bottom row.
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The neighborhood relationship among machines is defined as follows: On a 2D plane, 
any two machines whose regions share an edge are neighbors. In the d-dimensional space, 
two machines are neighbors of each other, if their regions share a (d − 1)-dimensional 
hyperplane. Figure 21.8 shows three stages of CAN. The routing table for each machine 
has O(d) entries. Since d is a constant for a given implementation, the space requirement 
is independent of the size of the network. Routing of queries takes place via the short-
est route from the source machine to the destination object. Figure 21.8c shows a sample 
route from the machine E to an object in machine D. In a 2D space, the maximum routing 
distance between a pair of nodes is n1/2—this holds when the interconnection network is 
a square grid, and the source and the destination machines have coordinates (0, 0) and 
(n1/2/2, n1/2/2). In general, in a d-dimensional torus, the routing distance between a pair of 
nodes is O(d ⋅ n1/d) hops.

21.8.4 Pastry

Pastry, developed by Microsoft Research in 2001, is a substrate for a variety of P2P applica-
tions. In addition to file sharing, such applications include global persistent storage util-
ity (PAST), group communication (SCRIBE), and cooperative web caching (SQUIRREL). 
Pastry is a DHT-based P2P system. Each node is assigned a 128-bit id that is generated by 
applying a cryptographic hash function on the node’s public key or its IP address. This id 
defines the position of a node in a circular key space of 2128 nodes. In an n-node system, any 
node can route messages to any other node in O(logrn) hops, where r = 2b (b > 0). A typical 
value of b is 4. Compared to Chord or CAN, the hop count in Pastry is in general much 
lower. In addition to routing with a low hop count, Pastry takes into account the physi-
cal proximity between nodes during neighbor selection, which minimizes the electrical 
distance between the source and the destination and leads to faster message delivery and 
query processing.
Routing: Pastry routes messages using prefix routing. To implement prefix routing, each 
Pastry node stores three types of information:

Leaf set L: Each node with id i maintains a list of L/2 nodes with numerically closest 
larger ids and L/2 nodes numerically closest smaller ids. Typically, |L| = 2b.

Routing table R: Each node i has a routing table of size (2 1)b
b n− × log .2   Row j of the 

table points to a node whose id shares the first j prefix digits with node i, but whose 
(j + 1)th prefix digit is different from that of node i.

Neighborhood set M: This set contains the nodes that are nearest to i with respect to the 
network distance (like round-trip delay).

A node can directly forward (i.e., in a single hop) a message to any member of its leaf 
set. If the destination node is not in the leaf set, then the message is forwarded to a node 
whose id shares the largest common prefix with the destination id. The routing table stores 
information about such nodes. Thus, to route a message from X to Y, the source node X 
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first sends the message to a node P whose id has a larger number of prefix digits in common 
with the id of the destination node Y. Thereafter, node P forwards the message to node Q 
whose id has even more prefix digits in common with the key of the destination node Y. 
This process is repeated until the final destination is reached (or a node in the leaf set of 
the final destination is reached—it takes one more hop to reach the destination node). A 
typical routing table for a network with n = 212 nodes and b = 2 (i.e., r = 4) is shown in 
Figure 21.9a. It has logr n = 6 rows and (r − 1) = 3 columns. The symbol X denotes a wildcard 
entry—thus, 21XXXX means some node whose id has the prefix is 21. Note that there is no 
guarantee that such a node can be found, and therefore, some of the entries in the routing 
tables are likely to remain blank. Figure 21.9b shows a possible route from node 203310 
to node 130102. Define the distance between a pair of ids as the number of digit positions 
where they differ. Then in each hop, this distance is reduced. The expected routing distance 
between a pair of nodes is O(logn). In case a suitable intermediate node is not found in the 
routing table, the message is forwarded to a node that shares a prefix with the key at least as 
long as the local node and is numerically closer to the key than the present node’s id. Only 
in rare cases, the final destination is not in the leaf set of the last node reached by prefix 
routing (i.e., it is still more than one hop away but there is no suitable entry in the routing 
table). If the distribution of the node ids is uniform, then with |L|/2 = 2b, the probability of 
this event is less than 0.02. It becomes much lower when |L| = 2b+1. Should this happen, the 
routing cost increases by one hop with high probability.

A larger value of b improves the efficacy of routing. When b = 4 (i.e., r = 16), and there 
are a billion nodes, then between any two Pastry nodes, a message will be routed in at most 
⌈log16 1,000,000,000⌉ = 7 hops. This assumes that the routing tables are fully populated. 
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FIGURE 21.9 (a) The routing table of a hypothetical Pastry node. X denotes a wildcard entry. 
(b) An example of routing in Pastry.
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Routing performance marginally degrades when some entries in the routing table are 
blank. Routing performance is also adversely affected by node failures. However, eventual 
message delivery is guaranteed unless |L|/2 nodes with consecutive ids simultaneously fail. 
Since the ids are randomly distributed in the key space, the possibility of this event, even 
for a small value of L, is very low.

Finally, Pastry routing pays attention to locality by keeping track of the physical prox-
imity between nodes in a neighborhood set M. Physical proximity is estimated by the 
round-trip delay of signals. A built-in function keeps track of this proximity. When a new 
node joins, it updates the neighborhood sets of the nodes in its routing table. Using the 
proximity relationship, each step routes the message to the nearest node with a longer pre-
fix match. Experiments have shown that the routing delay between a pair of nodes is only 
60% higher than the routing delay in a completely connected network.

Pastry routing is inspired by the work due to Plaxton et al. [PRR99]—commonly referred 
to Plaxton routing. In both cases, the routing is based on address prefixes, which can be 
viewed as a generalization of hypercube routing.

21.9 KOORDE AND DE BRUIJN GRAPH
The quest for a graph topology with constant node degree and logarithmic diameter has 
two answers in the P2P community: the butterfly network (used in Viceroy) and De Bruijn 
graph (used in Koorde, the Dutch name for Chord). To explore the lower bound of the 
diameter, we first prove the following theorem:

Theorem 21.1

In a graph G with n nodes and a constant degree k > 1 per node, the diameter

 D nk>   −log 1

Proof. When k > 1, 1 + k + k2 + k3 + ⋯ + kD ≥ n.

Thus, k

k
n

D+ −
−

≥
1 1

1
.

So, D + 1 ≥ logk(n(k − 1) + 1).
That is, D + 1 > ⌈logk n⌉.
Therefore, D > ⌈logk n⌉−1 ◼

The routing distance between the farthest pairs of nodes must at least be equal to the 
diameter. Directed De Bruijn graphs come closest to this bound, sometimes known as 
Moore bound. For n = 106 and k = 20, the diameter of De Bruijn graph is 5, when the 
diameter of classic butterfly network is 8, and the diameter of unidirectional Chord 
is 20. This led Kaashoek and Karger to propose Koorde. A De Bruijn graph with k = 2 
can be generated as follows (Figure 21.10a): From every node i of a graph with n 
nodes 0 through n − 1, draw two outgoing edges directed to the nodes i0 = 2 i mod n 
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and i1 = (2i + 1) mod n. Call these the 0-link and the 1-link of node i. A message from 
node i to node j can be routed as follows:

• Shift the logn bits of j so that its leading r bits tally with the last r bits of i as shown in 
Figure 21.10b.

• Forward the query along paths corresponding to the last (logn − r) bits of j: each 0 bit 
will define a hop along the 0-link and each 1 bit will need a hop along the 1-link.

For k > 2, the earlier construction can easily be generalized. From each node i, there will be 
k routing fingers pointing to the nodes k ⋅ i, k ⋅ i + 1, k ⋅ i + 2,…, k ⋅ i + k − 1 (additions mod n).

In spite of the promise, the use of De Bruijn graphs in P2P networking is very limited 
so far. This is due to the problem of dealing with the dynamic environment involving node 
join and leave operations. Each such operations will lead to changes in the routing tables of 
every node across the network, which is not very practical.

21.10 SKIP GRAPH
Bill Pugh introduced a randomized data structure called skip list—its goal is to accel-
erate the searching of objects in a sorted linked list by creating random bypass links. 
Figure 21.11a shows an example to illustrate the main idea. There are eight nodes in the 
linked list—all of them are all at level 0 (L0). Compare them to the stations in a subway 
with a single line from left to right. From these nodes, randomly pick a subset (with 50% 
 probability) and add them to a next level. The linked list at this level is the level 1 list (L1). 
The links in level 1 are essentially bypass links, which are like express lines connecting 
selected pairs of stations. Each list is fenced off by two special nodes +∞ and −∞ at the 
right and the left ends, respectively. The construction is recursive—one can add a subset of 
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FIGURE 21.10 (a) A De Bruijn graph with n = 8 and k = 2. (b) A route from 011 to 100.



Social and Peer-to-Peer Networks   ◾   489  

nodes from level 1 with 50% probability to another linked list in level 2 (L2). The construc-
tion ends when there is a single node at the uppermost level.

Consider the example of searching objects in a skip list. Assuming each link to cost one 
unit of time, a skip list can speed up search operations. At each level of the linked list, let 
v.right and v.left denote the elements to the right and to the left of a node v. To search for 
a node x, start with the leftmost node (v = −∞) at the highest level and follow these steps:

program search {search for node x in a skip list)
{initially v = ∝, level = max};
do v.right > x → move to the lower level
[] v.right < x → move to the right
[] v.right = x → node x is found
od

The search fails when the node is not found and no lower level exists.
A query for a node 65 will succeed as (L1)38 → 64 → L0(65), whereas a query for node 95 

will fail as (L2)86 → (L1:L0)86 → 94 → ? In a standard linked list, the first search would 
take six steps, and the second search would take nine steps.
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FIGURE 21.11 (a) A skip list. (b) A skip graph—only three levels are shown. Under each node in 
level 0, its membership vector is shown.
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One can use a bidirectional skip list (which uses a doubly linked list at every level) for 
the efficient routing of messages between pairs of nodes. Such a route will try to make the 
best use of the upper-level linked lists. For example, in Figure 21.11a, a query from 21 to 94 
will be routed in four hops as (L0)21 → 38 → (L1)64 → 86 → (L0)94.

If each list is doubly linked, then the expected number of edges in a skip list with 
n nodes is 2

2 4
4n n

n n
n+ + + + =� . This means that the average degree per node is only 4, 

a constant. Furthermore, the expected search latency is reduced from O(n) to O(logn), and 
the expected routing latency is also reduced from O(n) to O(logn). These make skip list an 
attractive data structure for large-scale applications.

Now consider using a skip list for query routing in P2P networks. Although routing 
takes only O(logn) steps, a major problem occurs when multiple nodes start sending que-
ries, causing too much congestion at the top-level node. To balance the load, Aspnes and 
Shah transformed the bidirectional skip list into a skip graph [AS03]. Figure 21.11b shows 
a skip graph. Unlike skip lists, in a skip graph, every node has a presence in all the levels, 
but they may join different doubly linked lists. From level 0, nodes that flip a coin get a 0 
and join the 0-list in level 1, and the remaining nodes join the 1-list. The next higher level 
further refines these lists and generates four lists for 00, 01, 10, 11 (some of which may 
possibly be empty). The random bit string (resulting from successive coin flips) for a node 
defines its membership vector. The construction stops when at the topmost level there are 
lists of singleton nodes only. Essentially, a skip graph is a superposition of several skip lists 
that share a common linked list at the base level 0.

The routing of a message from a source node to a destination node begins at the topmost 
level using a greedy approach. When the next hop is likely to meet a dead end, or overshoot 
the destination, the message is routed through the links at the next lower level in a recur-
sive manner. The lowest level linked list contains all the nodes—so message delivery to any 
destination node is guaranteed if that node exists. However, by utilizing the upper-level 
links as much as possible, routing latency is reduced. A summary of the performance of a 
skip graph is presented without proof:

 1. The expected number of routing hops between any pair of nodes in O(logn).

 2. The expected number of links per node O(logn).

 3. A node can join and leave the skip list in an expected number of O(logn) steps using 
O(logn) messages.

 4. The probability that a query from a source node i to a destination node j passes 
through a node k at a distance d from j is at most 2/(d + 1). This inverse relationship 
demonstrates good load balancing property—the presence of a hot spot affects its 
immediate neighborhood only.

 5. Skip graphs preserve the locality of objects and thus are excellent in resolving range-
based queries. One can, for example, easily locate all the publications of Daily Iowan 
during the period May 15–31, 2013. This is difficult in structured P2P networks like 
Chord or Pastry where hashing destroys the locality.
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 6. Skip graphs have excellent fault-tolerance properties. The expected search involves 
only O(logn) nodes, and most searches succeed as long as the fraction of randomly 
failing nodes is substantially less than 1/logn. A carefully targeted adversarial fail-
ure of f nodes can disconnect up to O( f · logn) nodes from a skip graph. Clearly, for 
random failures, the resilience is much better— experiments have shown that most 
of the large skip graphs remain connected even if up to 70% of the nodes undergo 
random failure, and messages eventually reach their destination.

These properties show the promise of skip graphs for P2P applications. The details of 
skip graphs can be found in Shah’s PhD thesis.

21.11 REPLICATION MANAGEMENT
Data replication reduces the access time and thus improves query processing in P2P 
networks. Ideally, if everyone maintains a local copy of every data object, then sharing 
will not be necessary—data will be instantly available and costly bandwidth will be 
saved. But this drastically increases the space requirement of active processes. Efficient 
replication strikes a balance between space and time complexities. Also, replication pro-
vides fault tolerance—when some machines crash or are shut down, other machines 
storing the replicas of the objects stored in the crashed machines maintain availability. 
For writeable objects, replication leads to data consistency issues—we address here read-
only objects.

Replication can be proactive or reactive. The FastTrack protocol (used in KaZaA) sup-
ports proactive or explicit replication (creates additional copies regardless of the demand 
at a predetermined rate), and much of its success can be attributed to this policy. In 
contrast, replication in Gnutella is implicit and reactive—all replicas are generated from 
the results of previous queries. In [SC02], Shenker and Cohen investigated the issue of 
explicit replication and its impact on the performance of query processing in unstruc-
tured P2P networks. They formulated the problem as follows: Given an object, its search 
size is the number of machines that will be visited to locate that object. The expected 
search size (ESS) is the expected value of the search size for a set of objects and a set of 
queries. This depends on a number of factors, like the number of replicas of the objects 
available in the system, the location of the peers searching the object, number of que-
ries made for each object, and the search strategies (like flooding or random walk). The 
important issue here is: given a set of objects, a search strategy, and a fixed amount total 
space (we assume this to be 1 unit) available for storing all the replicas across the entire 
system, how many replicas of each object should be generated so that the ESS is the small-
est? Note that excessive replication of one object will reduce the space available to the 
replicas of the other objects.

Consider m objects 1, 2, 3, …, m, all of the same size, in an unstructured Gnutella-like 
P2P system, where objects are searched using random walk. For a single object, the ESS is 
inversely proportional to the scale of replication. With m distinct objects, let the normal-
ized query rate of object i be qi and the fraction of total space allocated to object i be pi. By 



492   ◾   Distributed Systems: An Algorithmic Approach

definition, pi
i

m

=
=∑ 1

1
 and qi

i

m

=
=∑ 1

1
. Without loss of generality, assume that q1 ≥ q2 ≥ 

q3 ≥ ⋯ ≥ qm. To minimize the ESS, two replication policies are quite intuitive:

• Uniform replication: Each object is allocated the same amount of space, regardless of 
the query rate. Thus, ∀i:pi = 1/m.

• Proportional replication: The space allocated to the replicas of an object is propor-
tional to the query rate, that is, pi = qi. This makes sense because this is likely to lead 
to faster access to the objects that are queried more often.

For insoluble queries, the search size is either equal to the size of the system or equal to the 
maximum that is permitted by the TTL parameter of the system.

Cohen and Shenker [CS02] proved the surprising result that for soluble queries, the ESS 
is identical for both of these replication policies. The optimal strategy is somewhere in-
between uniform and square root replication. It is the new policy of square root replication, 
where pi is proportional to qi .

In replication management, not only the number of copies but also their placement is 
important. Apart from owner replication where the replication sites are determined by 
the owner of the object, two other approaches are in use: path replication and random 
 replication. Path replication creates replicas on all nodes in the path from the provider to 
the requesting node. Interestingly, path replication spontaneously implements the square 
root replication policy. Random replication, on the other hand, places replicas on a number 
of randomly selected nodes in the search paths.

21.12 BITTORRENT AND FREE RIDING
BitTorrent is an efficient protocol for content distribution using the idea of file swarming. 
The protocol is particularly attractive for distributing large files like video or movie files. 
BitTorrent does not perform all the functions of a typical P2P system. The main idea in 
BitTorrent is as follows: The file to be distributed is split into a large number of pieces and 
a SHA-1 hash is appended for each piece. To allow sharing of the file or group of files, the 
initiator first creates a .torrent file, a small file that contains the metadata about the files 
to be shared, which includes (1) the length of the file, (2) piece size, (3) a mapping of the 
pieces to files, (4) the SHA-1 hashes of all pieces, and (5) information about the tracker, a 
computer that coordinates the file distribution. The tracker maintains the set of all peers 
participating in the sharing of that file—this set is called a swarm. Each downloader first 
accesses the .torrent file and then connects to the specified tracker that provides informa-
tion about other peers downloading the pieces of the same file. BitTorrent peers play two 
different roles: seeders and leechers. A seeder is a peer that provides a complete copy of 
the file. Initially, there is only one seeder, which is the peer that wants to distribute the 
file. A leecher is a peer that downloads pieces of the file from other peers. As a leecher 
downloads pieces of the file, replicas of the pieces are created. More downloads mean more 
replica pieces are available in the swarm, and other peers that have not yet acquired these 
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pieces can download them. As soon as a leecher acquires a complete piece, it becomes a 
seeder. Eventually, each leecher becomes a seeder by obtaining all the pieces and assembles 
the file. The checksum associated with a piece is used to check the integrity of the piece.

The order in which the pieces are downloaded is critical for good performance. If an 
inefficient policy is used, then peers may end up in a situation where each peer has all 
identical set of easily available pieces and none of the missing ones. If the original seed 
is prematurely taken down, then the file cannot be completely downloaded. Figure 21.12 
shows the state of the peers in a swarm.

Two of the good policies for piece selection are (1) rarest first, so that a rare piece does not 
become a bottleneck for completing the download, and (2) random first piece, at the begin-
ning of the downloading process—the eventual goal is to reduce the overlap among the 
sets of downloaded pieces by the various peers, which expedites the download by opening 
up more opportunities in piece selection and thus better progress. Near the end, missing 
pieces are requested from every peer containing them. This ensures that a download is not 
prevented from completion due to a single peer with a slow transfer rate. Some bandwidth 
is wasted, but in practice, this is insignificant compared to its benefits.

According to an older study [AH00] on the Gnutella system, 70% of peers only 
download files without uploading any, and 50% of the queries are served by only 1% 
of the hosts. Users who only download but never upload any files are known as free 
riders, or freeloaders. Freeloading is an inappropriate behavior that affects the healthy 
functioning of P2P systems, and many solutions have been proposed and debated. An 
apparent solution is to charge a fee and limit the time of downloads. Other approaches 
include rewarding the donors by allowing them more downloads or faster downloads. 
BitTorrent’s anti- freeloading mechanism is based on the principle of reciprocation—
downloaders barter for fragments of a file by uploading some of the pieces that they 
have already downloaded. This tit-for-tat mechanism discourages freeloaders. To coop-
erate, peers must upload; otherwise, they will be choked. The system lets users discover 

Peer 1

Peer 2

Peer 4

Peer 3

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

(a) (b)

FIGURE 21.12 The states of the peers in BitTorrent: the shaded boxes denote the pieces that have 
been downloaded. (a) Each of the four peers has acquired a few of the eight pieces of the file. 
(b) The states of the peers after peer 2 downloads piece 4 from peers 3 and 4 downloads piece 6 
from peer 1.
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a set of more desirable peers who comply with this principle. It approximates Pareto 
efficiency in game theory, in which pairs of counterparts see if they can improve their 
lots together.

Using the BitTorrent protocol, Facebook is now able to send several hundred MB of code 
updates to thousands of servers under a minute. The internal Facebook swarm treats every 
server as a peer—this substantially accelerates the distribution of the new code. Twitter 
also uses the same idea.

21.13 CENSORSHIP RESISTANCE, ANONYMITY
Most nations have a body that decides what information to censor and what informa-
tion to allow. What may be acceptable to one group of people may be offensive to another 
group. Fiat and Saia [FS02] defined a censorship resistance network as one, where even if an 
adversary (read censorship authority) deletes up to half of the nodes, (1 − ε) fraction of the 
remaining nodes should still be able to access (1 − ε) fraction of all the data items, where ε 
is a fixed error parameter. His solution for designing such networks involves modifying the 
interconnection network of DHT-based systems using redundant links.

Freenet (launched in 2001) was designed to remove the possibility of any group impos-
ing their beliefs or values on any other group. The goal was to encourage tolerance to each 
other’s values and freedom of speech (but not copyright infringements). Freenet preserves 
anonymity using a complex protocol. Objects stored in the system are encrypted and repli-
cated across a large number of anonymous machines around the world, and their identities 
continuously change. Each file is encrypted and broken up into several pieces. Not only 
potential intruders but also the peers themselves have no clue about which peers are stor-
ing one of their files or a fragment of it.

21.14 CONCLUDING REMARKS
The rapid proliferation of modern social networks has renewed interest in understanding 
the mechanisms of growth and decay of these structures. With the membership of some of 
the popular social networks reaching close to a billion, efficient analytical tools for these 
networks are in high demand.

In P2P networks, structured or unstructured, which is better is a common debate. Both 
have their strong and weak points. Unstructured networks need little management over-
head, although lookups are, in general, slower. On the other hand, in structured networks, 
lookups are faster. However, objects need to be published following a stringent mapping 
rule, and due to the high churn rate, the pointers as well as objects need to be constantly 
moved to maintain consistency.

Since P2P networks are large-scale networks involving untrusted machines, various 
security measures are important for serious applications. For example, a single malicious 
node fielding multiple ids can disrupt the normal functioning of a P2P network. This is 
called a Sybil attack. Another issue is resistance to spams. This will guarantee that users 
are not fooled into retrieving fake copies of the object despite the malicious behavior of a 
handful of machines.
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Uniform distribution of keys is important for load balancing in DHT-based networks. 
The consistent hashing algorithm of Chord and Pastry takes care of this issue. Consistent 
hashing guarantees that if there are k keys in a network with an id space of size n, then the 
addition or deletion of a single node can lead to the reshuffling of at most k/n nodes with 
high probability.

Chord does not take into consideration the geographic distribution of neighbors—thus, 
a neighbor can be a machine in the next building or a machine halfway around the globe. 
Since the routing time depends on the geographic distance, lookup will be faster if the geo-
graphic location is taken into consideration while the neighborhood is defined. In contrast, 
Pastry routes messages via geographically close neighbors. This expedites lookup. Finally, 
the ability of handling high churn rate (the rate at which new nodes join and existing nodes 
drop out) and the ability to deal with flashcrowd effect (sudden popularity of a file) may 
play major roles in determining the usability of a given P2P system.

P2P networks have successful presence in the world of streaming data. Apart from the 
distribution of videos through social networking sites, Skype is a proprietary P2P architec-
ture that powers our audio and video chats.

P2P networks are useful for building large amounts of storage. UC Berkeley’s Oceanstore 
[KBC+00] and Facebook’s Cassandra file system [LM10] are two prominent examples. 
However, in storage applications, cloud computing is a serious contender with its steeply 
rising popularity. One needs to carefully weigh the pros and cons of these two technologies.

21.15 BIBLIOGRAPHIC NOTES
Erdös and Rényi introduced the ER random graph model for a class of social networks. 
Their eight papers that established the theory of random graphs are listed by Karonski and 
Rucinski in [KR97]. Barabási and Albert [BA99] proposed the rich gets richer model for the 
generation of power-law graphs. Milgram [M67] first observed the small-world  phenomenon 
in 1967. Later, Watts and Strogatz [WS98] presented a model of social  networks as a possi-
ble explanation for the small-world phenomenon. Jon Kleinberg’s refinement of the Watts–
Strogatz model can be found in [K00].

Eighteen-year-old Shawn Fanning was the creator of Napster in 1999. The music indus-
try sued the company, claiming losses of millions in royalties. Napster lost the case in 2000 
and ordered to be shut down. In 2002, Napster filed for bankruptcy. How the old Napster 
worked is documented in [N02]. In 2011, Rhapsody acquired Napster.

Justin Frankel of Nullsoft, an AOL-owned company, developed Gnutella in 2001. 
Currently, Gnutella Developer’s Forum is the sole group responsible for all Gnutella-related 
protocols. The official documentation of Gnutella is available in [G02].

Soon after the shutdown of Napster, Niklas Zennstrom and Janus Friis launched 
KaZaA [K01]. Now KaZaA survives through some of its variations. DHT-based P2P 
network Chord follows the work by Stoica et al. [SML+03]. Ratnasamy et al. wrote the 
paper on CAN [RFH+01]. Pastry was proposed by Rowstron and Druschel [RD01]. John 
Kubiatowicz led the Oceanstore project in Berkeley [KBC+00]—a brief summary of the 
main goals of the project appears in their CACM article [K03].
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Pugh invented skip lists [P90]. Gauri Shah’s PhD thesis contains the details of skip 
graphs. A brief summary of it can be found in [AS03]. Uniform, proportional, and square 
root replications have been discussed in Cohen and Shenker’s work [CS02]. Karl Aberer’s 
P-grid project [ACD+03] describes a structured P2P network that provides good load bal-
ancing in spite of arbitrary key distributions in the key space. Fiat and Saia [FS02] stud-
ied how the DHT-based P2P networks can be modified for censorship resistance. Freenet 
uses a different approach to censorship resistance and is based on the paper by Ian Clarke 
and his associates [CSW+00]. Ian Clarke was selected as one of the top 100 innovators of 
2003 by MIT’s Technology Review magazine. Bram Cohen designed the BitTorrent P2P 
 system [C03]. Cassandra file system is described in [LM10].

EXERCISES
21.1 Consider the degree distribution (k = degree and N(k) = number of nodes with 

degree k) of four networks. The scales are linear and approximate. Which one of 
these four graphs possibly represents a power-law distribution (Figure 21.13)?

21.2 Consider three different network topologies with n nodes in each: (1) a ring topology 
where each node k has a predecessor node (k − 1) mod n and a successor node (k + 1) 
mod n, (2) a clique (a completely connected topology), and (3) an ER graph (where 
with uniform probability p ≪ 1, an edge is added between each pair of nodes). Are 
any of these acceptable as the topology of a P2P network? Why or why not? Briefly 
justify your answer for each case.

21.3 What are the values of the clustering coefficient of nodes C and D in the following 
two networks of Figure 21.14?
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FIGURE 21.13 Four possible degree distributions of nodes.



Social and Peer-to-Peer Networks   ◾   497  

21.4 Consider search and routing in a small-scale Pastry P2P network with 256 nodes. 
It uses the base-4 notation for node naming and routing table construction. The 
following is an incomplete primary neighbor table of node 3012. Fill in the missing 
entries in the routing table.

L3 L2 L1 L0 
 X012  XXX0 

  XX12 XXX1 
2012  XX22 XXX2 

 X312  XXX3

(X denoted a wildcard entry)

21.5 DHT-based P2P networks aim at reducing the size of its local routing tables, as 
well as the maximum number of hops needed to retrieve an object. Let us focus 
on the architectures that use a constant size routing table per node and O(logn) 
hops to retrieve any object. One such system is Koorde that uses De Bruijn graph 
as the interconnection network. Another possibility is to use a butterfly network. 
Explore the design of a P2P system that will use the butterfly network. You have 
to address routing, as well as node join-and-leave protocols. 
(Hint: See Viceroy [MNR02].)

21.6 Consider a unidirectional Chord network with n = 216 nodes numbered 0 through 
n  − 1. Each hop routes every query in the forward direction, until the object is 
found.
a. How many hops will it take to route a query from node 0011 0011 1111 1100 to 

0100 0000 0000 0000?
b. Now modify Chord routing to accommodate bidirectional query forwarding. 

Show that this reduces the number of hops, and calculate the number of hops for 
the example in part (a).
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FIGURE 21.14 Two networks.



498   ◾   Distributed Systems: An Algorithmic Approach

21.7 Consider a 3D CAN with N nodes in it. What is the smallest size of the network, 
beyond which the number of routing hops in CAN will be larger than that in Chord?

21.8 Caching is a well-studied mechanism for the improvement of lookup time in P2P 
networks. Consider route caching that profiles the most recent accesses and stores 
them in a local buffer. To the routing table of each node, add a buffer of size logn 
to cache the IP address of the most frequently accessed objects by that node (call 
them preferred objects), so that they are reachable in a single hop. We will call it a 
selfish cache.

The selfish cache will shorten the routing distance in many cases. When a query 
cannot reach its destination in a single hop, the original routing table entries will 
be used to forward it. Assuming that the preferred objects are randomly distrib-
uted, to what extent will the average routing distance be reduced compared to the 
original Chord? Assume that the hot spots are randomly distributed around the 
key space.

21.9 Experiments with access patterns in unstructured P2P networks have revealed clus-
tering effect, where each node’s communication is mostly limited to a small subset 
of its peers. The identity of the nodes in each cluster depends on common interest, 
race, nationality, or geographical proximity.

Assuming that such clusters can be easily identified through a continuous profil-
ing mechanism, explore how the clustering effect can be used to reduce the average 
lookup time. (Hint: Use a two-level approach and speed up the common case.)

21.10 Concurrent join/leave operations or occasional transient failures can leave a Chord 
network in a bad configuration. For the self-stabilization of such networks, local 
checkability is an important requirement. Local checkability implies that for every 
bad configuration, at least one node must be able to detect it by checking its imme-
diate neighborhood. Is Chord locally checkable?

21.11 Why is the geographic proximity of nodes an issue in routing queries on P2P 
networks?

21.12 Why can a large number of BitTorrent clients download videos faster than what is 
feasible in a client–server system or in the Gnutella network?

21.13 There are some strong similarities between search for domain names in DNS and 
object search in P2P network. How is DNS currently implemented? Are there road-
blocks in implementing DNS using the P2P technology?

21.14 a.  What kind of failures can partition the Chord P2P network? Are there remedies 
to prevent this kind of partitioning?

b.  What kind of failures can make objects inaccessible even if the network is not 
partitioned? Are there remedies to prevent this problem?

21.15 When data are stored into unknown or untrusted machines, security of the data 
becomes a key concern for serious applications. Describe all the methods that you 
consider appropriate for safeguarding data in a P2P network.
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21.16 Compare the advantages and disadvantages of storing persistent data in the cloud 
versus storing data in a P2P network.

21.17 (Programming exercise) Download NetworkX, a Python package for the creation, 
manipulation, and study of the structure, dynamics, and functions of complex net-
works. This package has a library of various kinds of graphs as well as the imple-
mentation of various useful algorithms for social network analysis.
Part 1: The goal of this homework is to generate a social network. Recall how a 

power-law graph is generated using the idea of preferential attachment. Starting 
with a single node, in each step, add a node to the network using a single edge. 
The probability of choosing the node to which it will attach will be proportional 
to the degree of that node.
a. Using this rule, generate three graphs, n = 1000, 2000, 5000 nodes.
b.  Show the degree distribution of the generated graph: plot logN(k) versus log k, 

where k is the degree of a node and N(k) is the number of nodes having degree k. 
Verify that the power law (N(k) = c · k−r) holds, and estimate the value of r.

Part 2: Consider the Karate Club network described in http://haystack.csail.mit.
edu/blog/2010/07/12/data-by-the-people-for-the-people/.
Your tasks are as follows:
a. Compute the edge(s) of highest betweenness in this network.
b.  Remove the edge(s) of highest betweenness, and visualize the graph and see 

if it has been partitioned into disjoint communities. If not, then repeat the 
earlier two steps, until the graph partitions, and then stop.

c. List the edges that you removed.
21.18 (Programming exercise) Study the construction of small-world graphs by Watts and 

Strogatz. Then simulate a ring lattice with N = 5000 and k = 20 (the number of short-
range neighbors). Compute the routing hops between fifty different pairs of peers 
chosen at random. Explain your observations.

The code can be written in Java/C++. The Java standard library or C++ STL will 
simplify life because you will have to use a lot of varying data structures to imple-
ment the system. However, you are free to use a programming language of your 
choice.

21.19 (Programming project) Use a web crawler to explore the topology of the web of your 
institution and check if it satisfies the power-law distribution.
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